patch-1.3.94 linux/arch/m68k/fpsp040/bindec.S

Next file: linux/arch/m68k/fpsp040/binstr.S
Previous file: linux/arch/m68k/fpsp040/Makefile
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v1.3.93/linux/arch/m68k/fpsp040/bindec.S linux/arch/m68k/fpsp040/bindec.S
@@ -0,0 +1,920 @@
+|
+|	bindec.sa 3.4 1/3/91
+|
+|	bindec
+|
+|	Description:
+|		Converts an input in extended precision format
+|		to bcd format.
+|
+|	Input:
+|		a0 points to the input extended precision value
+|		value in memory; d0 contains the k-factor sign-extended
+|		to 32-bits.  The input may be either normalized,
+|		unnormalized, or denormalized.
+|
+|	Output:	result in the FP_SCR1 space on the stack.
+|
+|	Saves and Modifies: D2-D7,A2,FP2
+|
+|	Algorithm:
+|
+|	A1.	Set RM and size ext;  Set SIGMA = sign of input.  
+|		The k-factor is saved for use in d7. Clear the
+|		BINDEC_FLG for separating normalized/denormalized
+|		input.  If input is unnormalized or denormalized,
+|		normalize it.
+|
+|	A2.	Set X = abs(input).
+|
+|	A3.	Compute ILOG.
+|		ILOG is the log base 10 of the input value.  It is
+|		approximated by adding e + 0.f when the original 
+|		value is viewed as 2^^e * 1.f in extended precision.  
+|		This value is stored in d6.
+|
+|	A4.	Clr INEX bit.
+|		The operation in A3 above may have set INEX2.  
+|
+|	A5.	Set ICTR = 0;
+|		ICTR is a flag used in A13.  It must be set before the 
+|		loop entry A6.
+|
+|	A6.	Calculate LEN.
+|		LEN is the number of digits to be displayed.  The
+|		k-factor can dictate either the total number of digits,
+|		if it is a positive number, or the number of digits
+|		after the decimal point which are to be included as
+|		significant.  See the 68882 manual for examples.
+|		If LEN is computed to be greater than 17, set OPERR in
+|		USER_FPSR.  LEN is stored in d4.
+|
+|	A7.	Calculate SCALE.
+|		SCALE is equal to 10^ISCALE, where ISCALE is the number
+|		of decimal places needed to insure LEN integer digits
+|		in the output before conversion to bcd. LAMBDA is the
+|		sign of ISCALE, used in A9. Fp1 contains
+|		10^^(abs(ISCALE)) using a rounding mode which is a
+|		function of the original rounding mode and the signs
+|		of ISCALE and X.  A table is given in the code.
+|
+|	A8.	Clr INEX; Force RZ.
+|		The operation in A3 above may have set INEX2.  
+|		RZ mode is forced for the scaling operation to insure
+|		only one rounding error.  The grs bits are collected in 
+|		the INEX flag for use in A10.
+|
+|	A9.	Scale X -> Y.
+|		The mantissa is scaled to the desired number of
+|		significant digits.  The excess digits are collected
+|		in INEX2.
+|
+|	A10.	Or in INEX.
+|		If INEX is set, round error occured.  This is
+|		compensated for by 'or-ing' in the INEX2 flag to
+|		the lsb of Y.
+|
+|	A11.	Restore original FPCR; set size ext.
+|		Perform FINT operation in the user's rounding mode.
+|		Keep the size to extended.
+|
+|	A12.	Calculate YINT = FINT(Y) according to user's rounding
+|		mode.  The FPSP routine sintd0 is used.  The output
+|		is in fp0.
+|
+|	A13.	Check for LEN digits.
+|		If the int operation results in more than LEN digits,
+|		or less than LEN -1 digits, adjust ILOG and repeat from
+|		A6.  This test occurs only on the first pass.  If the
+|		result is exactly 10^LEN, decrement ILOG and divide
+|		the mantissa by 10.
+|
+|	A14.	Convert the mantissa to bcd.
+|		The binstr routine is used to convert the LEN digit 
+|		mantissa to bcd in memory.  The input to binstr is
+|		to be a fraction; i.e. (mantissa)/10^LEN and adjusted
+|		such that the decimal point is to the left of bit 63.
+|		The bcd digits are stored in the correct position in 
+|		the final string area in memory.
+|
+|	A15.	Convert the exponent to bcd.
+|		As in A14 above, the exp is converted to bcd and the
+|		digits are stored in the final string.
+|		Test the length of the final exponent string.  If the
+|		length is 4, set operr.
+|
+|	A16.	Write sign bits to final string.
+|
+|	Implementation Notes:
+|
+|	The registers are used as follows:
+|
+|		d0: scratch; LEN input to binstr
+|		d1: scratch
+|		d2: upper 32-bits of mantissa for binstr
+|		d3: scratch;lower 32-bits of mantissa for binstr
+|		d4: LEN
+|      		d5: LAMBDA/ICTR
+|		d6: ILOG
+|		d7: k-factor
+|		a0: ptr for original operand/final result
+|		a1: scratch pointer
+|		a2: pointer to FP_X; abs(original value) in ext
+|		fp0: scratch
+|		fp1: scratch
+|		fp2: scratch
+|		F_SCR1:
+|		F_SCR2:
+|		L_SCR1:
+|		L_SCR2:
+
+|		Copyright (C) Motorola, Inc. 1990
+|			All Rights Reserved
+|
+|	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA 
+|	The copyright notice above does not evidence any  
+|	actual or intended publication of such source code.
+
+|BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
+
+	.include "fpsp.h"
+
+	|section	8
+
+| Constants in extended precision
+LOG2: 	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
+LOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
+
+| Constants in single precision
+FONE: 	.long	0x3F800000,0x00000000,0x00000000,0x00000000
+FTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000
+FTEN: 	.long	0x41200000,0x00000000,0x00000000,0x00000000
+F4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000
+
+RBDTBL: 	.byte	0,0,0,0
+	.byte	3,3,2,2
+	.byte	3,2,2,3
+	.byte	2,3,3,2
+
+	|xref	binstr
+	|xref	sintdo
+	|xref	ptenrn,ptenrm,ptenrp
+
+	.global	bindec
+	.global	sc_mul
+bindec:
+	moveml	%d2-%d7/%a2,-(%a7)
+	fmovemx %fp0-%fp2,-(%a7)
+
+| A1. Set RM and size ext. Set SIGMA = sign input;
+|     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
+|     separating  normalized/denormalized input.  If the input
+|     is a denormalized number, set the BINDEC_FLG memory word
+|     to signal denorm.  If the input is unnormalized, normalize
+|     the input and test for denormalized result.  
+|
+	fmovel	#rm_mode,%FPCR	|set RM and ext
+	movel	(%a0),L_SCR2(%a6)	|save exponent for sign check
+	movel	%d0,%d7		|move k-factor to d7
+	clrb	BINDEC_FLG(%a6)	|clr norm/denorm flag
+	movew	STAG(%a6),%d0	|get stag
+	andiw	#0xe000,%d0	|isolate stag bits
+	beq	A2_str		|if zero, input is norm
+|
+| Normalize the denorm
+|
+un_de_norm:
+	movew	(%a0),%d0
+	andiw	#0x7fff,%d0	|strip sign of normalized exp
+	movel	4(%a0),%d1
+	movel	8(%a0),%d2
+norm_loop:
+	subw	#1,%d0
+	lsll	#1,%d2
+	roxll	#1,%d1
+	tstl	%d1
+	bges	norm_loop
+|
+| Test if the normalized input is denormalized
+|
+	tstw	%d0
+	bgts	pos_exp		|if greater than zero, it is a norm
+	st	BINDEC_FLG(%a6)	|set flag for denorm
+pos_exp:
+	andiw	#0x7fff,%d0	|strip sign of normalized exp
+	movew	%d0,(%a0)
+	movel	%d1,4(%a0)
+	movel	%d2,8(%a0)
+
+| A2. Set X = abs(input).
+|
+A2_str:
+	movel	(%a0),FP_SCR2(%a6) | move input to work space
+	movel	4(%a0),FP_SCR2+4(%a6) | move input to work space
+	movel	8(%a0),FP_SCR2+8(%a6) | move input to work space
+	andil	#0x7fffffff,FP_SCR2(%a6) |create abs(X)
+
+| A3. Compute ILOG.
+|     ILOG is the log base 10 of the input value.  It is approx-
+|     imated by adding e + 0.f when the original value is viewed
+|     as 2^^e * 1.f in extended precision.  This value is stored
+|     in d6.
+|
+| Register usage:
+|	Input/Output
+|	d0: k-factor/exponent
+|	d2: x/x
+|	d3: x/x
+|	d4: x/x
+|	d5: x/x
+|	d6: x/ILOG
+|	d7: k-factor/Unchanged
+|	a0: ptr for original operand/final result
+|	a1: x/x
+|	a2: x/x
+|	fp0: x/float(ILOG)
+|	fp1: x/x
+|	fp2: x/x
+|	F_SCR1:x/x
+|	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
+|	L_SCR1:x/x
+|	L_SCR2:first word of X packed/Unchanged
+
+	tstb	BINDEC_FLG(%a6)	|check for denorm
+	beqs	A3_cont		|if clr, continue with norm
+	movel	#-4933,%d6	|force ILOG = -4933
+	bras	A4_str
+A3_cont:
+	movew	FP_SCR2(%a6),%d0	|move exp to d0
+	movew	#0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
+	fmovex	FP_SCR2(%a6),%fp0	|now fp0 has 1.f
+	subw	#0x3fff,%d0	|strip off bias
+	faddw	%d0,%fp0		|add in exp
+	fsubs	FONE,%fp0	|subtract off 1.0
+	fbge	pos_res		|if pos, branch 
+	fmulx	LOG2UP1,%fp0	|if neg, mul by LOG2UP1
+	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
+	bras	A4_str		|go move out ILOG
+pos_res:
+	fmulx	LOG2,%fp0	|if pos, mul by LOG2
+	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
+
+
+| A4. Clr INEX bit.
+|     The operation in A3 above may have set INEX2.  
+
+A4_str:	
+	fmovel	#0,%FPSR		|zero all of fpsr - nothing needed
+
+
+| A5. Set ICTR = 0;
+|     ICTR is a flag used in A13.  It must be set before the 
+|     loop entry A6. The lower word of d5 is used for ICTR.
+
+	clrw	%d5		|clear ICTR
+
+
+| A6. Calculate LEN.
+|     LEN is the number of digits to be displayed.  The k-factor
+|     can dictate either the total number of digits, if it is
+|     a positive number, or the number of digits after the
+|     original decimal point which are to be included as
+|     significant.  See the 68882 manual for examples.
+|     If LEN is computed to be greater than 17, set OPERR in
+|     USER_FPSR.  LEN is stored in d4.
+|
+| Register usage:
+|	Input/Output
+|	d0: exponent/Unchanged
+|	d2: x/x/scratch
+|	d3: x/x
+|	d4: exc picture/LEN
+|	d5: ICTR/Unchanged
+|	d6: ILOG/Unchanged
+|	d7: k-factor/Unchanged
+|	a0: ptr for original operand/final result
+|	a1: x/x
+|	a2: x/x
+|	fp0: float(ILOG)/Unchanged
+|	fp1: x/x
+|	fp2: x/x
+|	F_SCR1:x/x
+|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
+|	L_SCR1:x/x
+|	L_SCR2:first word of X packed/Unchanged
+
+A6_str:	
+	tstl	%d7		|branch on sign of k
+	bles	k_neg		|if k <= 0, LEN = ILOG + 1 - k
+	movel	%d7,%d4		|if k > 0, LEN = k
+	bras	len_ck		|skip to LEN check
+k_neg:
+	movel	%d6,%d4		|first load ILOG to d4
+	subl	%d7,%d4		|subtract off k
+	addql	#1,%d4		|add in the 1
+len_ck:
+	tstl	%d4		|LEN check: branch on sign of LEN
+	bles	LEN_ng		|if neg, set LEN = 1
+	cmpl	#17,%d4		|test if LEN > 17
+	bles	A7_str		|if not, forget it
+	movel	#17,%d4		|set max LEN = 17
+	tstl	%d7		|if negative, never set OPERR
+	bles	A7_str		|if positive, continue
+	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
+	bras	A7_str		|finished here
+LEN_ng:
+	moveql	#1,%d4		|min LEN is 1
+
+
+| A7. Calculate SCALE.
+|     SCALE is equal to 10^ISCALE, where ISCALE is the number
+|     of decimal places needed to insure LEN integer digits
+|     in the output before conversion to bcd. LAMBDA is the sign
+|     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
+|     the rounding mode as given in the following table (see
+|     Coonen, p. 7.23 as ref.; however, the SCALE variable is
+|     of opposite sign in bindec.sa from Coonen).
+|
+|	Initial					USE
+|	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
+|	----------------------------------------------
+|	 RN	00	   0	   0		00/0	RN
+|	 RN	00	   0	   1		00/0	RN
+|	 RN	00	   1	   0		00/0	RN
+|	 RN	00	   1	   1		00/0	RN
+|	 RZ	01	   0	   0		11/3	RP
+|	 RZ	01	   0	   1		11/3	RP
+|	 RZ	01	   1	   0		10/2	RM
+|	 RZ	01	   1	   1		10/2	RM
+|	 RM	10	   0	   0		11/3	RP
+|	 RM	10	   0	   1		10/2	RM
+|	 RM	10	   1	   0		10/2	RM
+|	 RM	10	   1	   1		11/3	RP
+|	 RP	11	   0	   0		10/2	RM
+|	 RP	11	   0	   1		11/3	RP
+|	 RP	11	   1	   0		11/3	RP
+|	 RP	11	   1	   1		10/2	RM
+|
+| Register usage:
+|	Input/Output
+|	d0: exponent/scratch - final is 0
+|	d2: x/0 or 24 for A9
+|	d3: x/scratch - offset ptr into PTENRM array
+|	d4: LEN/Unchanged
+|	d5: 0/ICTR:LAMBDA
+|	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
+|	d7: k-factor/Unchanged
+|	a0: ptr for original operand/final result
+|	a1: x/ptr to PTENRM array
+|	a2: x/x
+|	fp0: float(ILOG)/Unchanged
+|	fp1: x/10^ISCALE
+|	fp2: x/x
+|	F_SCR1:x/x
+|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
+|	L_SCR1:x/x
+|	L_SCR2:first word of X packed/Unchanged
+
+A7_str:	
+	tstl	%d7		|test sign of k
+	bgts	k_pos		|if pos and > 0, skip this
+	cmpl	%d6,%d7		|test k - ILOG
+	blts	k_pos		|if ILOG >= k, skip this
+	movel	%d7,%d6		|if ((k<0) & (ILOG < k)) ILOG = k
+k_pos:	
+	movel	%d6,%d0		|calc ILOG + 1 - LEN in d0
+	addql	#1,%d0		|add the 1
+	subl	%d4,%d0		|sub off LEN
+	swap	%d5		|use upper word of d5 for LAMBDA
+	clrw	%d5		|set it zero initially
+	clrw	%d2		|set up d2 for very small case
+	tstl	%d0		|test sign of ISCALE
+	bges	iscale		|if pos, skip next inst
+	addqw	#1,%d5		|if neg, set LAMBDA true
+	cmpl	#0xffffecd4,%d0	|test iscale <= -4908
+	bgts	no_inf		|if false, skip rest
+	addil	#24,%d0		|add in 24 to iscale
+	movel	#24,%d2		|put 24 in d2 for A9
+no_inf:	
+	negl	%d0		|and take abs of ISCALE
+iscale:	
+	fmoves	FONE,%fp1	|init fp1 to 1
+	bfextu	USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
+	lslw	#1,%d1		|put them in bits 2:1
+	addw	%d5,%d1		|add in LAMBDA
+	lslw	#1,%d1		|put them in bits 3:1
+	tstl	L_SCR2(%a6)	|test sign of original x
+	bges	x_pos		|if pos, don't set bit 0
+	addql	#1,%d1		|if neg, set bit 0
+x_pos:
+	leal	RBDTBL,%a2	|load rbdtbl base
+	moveb	(%a2,%d1),%d3	|load d3 with new rmode
+	lsll	#4,%d3		|put bits in proper position
+	fmovel	%d3,%fpcr		|load bits into fpu
+	lsrl	#4,%d3		|put bits in proper position
+	tstb	%d3		|decode new rmode for pten table
+	bnes	not_rn		|if zero, it is RN
+	leal	PTENRN,%a1	|load a1 with RN table base
+	bras	rmode		|exit decode
+not_rn:
+	lsrb	#1,%d3		|get lsb in carry
+	bccs	not_rp		|if carry clear, it is RM
+	leal	PTENRP,%a1	|load a1 with RP table base
+	bras	rmode		|exit decode
+not_rp:
+	leal	PTENRM,%a1	|load a1 with RM table base
+rmode:
+	clrl	%d3		|clr table index
+e_loop:	
+	lsrl	#1,%d0		|shift next bit into carry
+	bccs	e_next		|if zero, skip the mul
+	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
+e_next:	
+	addl	#12,%d3		|inc d3 to next pwrten table entry
+	tstl	%d0		|test if ISCALE is zero
+	bnes	e_loop		|if not, loop
+
+
+| A8. Clr INEX; Force RZ.
+|     The operation in A3 above may have set INEX2.  
+|     RZ mode is forced for the scaling operation to insure
+|     only one rounding error.  The grs bits are collected in 
+|     the INEX flag for use in A10.
+|
+| Register usage:
+|	Input/Output
+
+	fmovel	#0,%FPSR		|clr INEX 
+	fmovel	#rz_mode,%FPCR	|set RZ rounding mode
+
+
+| A9. Scale X -> Y.
+|     The mantissa is scaled to the desired number of significant
+|     digits.  The excess digits are collected in INEX2. If mul,
+|     Check d2 for excess 10 exponential value.  If not zero, 
+|     the iscale value would have caused the pwrten calculation
+|     to overflow.  Only a negative iscale can cause this, so
+|     multiply by 10^(d2), which is now only allowed to be 24,
+|     with a multiply by 10^8 and 10^16, which is exact since
+|     10^24 is exact.  If the input was denormalized, we must
+|     create a busy stack frame with the mul command and the
+|     two operands, and allow the fpu to complete the multiply.
+|
+| Register usage:
+|	Input/Output
+|	d0: FPCR with RZ mode/Unchanged
+|	d2: 0 or 24/unchanged
+|	d3: x/x
+|	d4: LEN/Unchanged
+|	d5: ICTR:LAMBDA
+|	d6: ILOG/Unchanged
+|	d7: k-factor/Unchanged
+|	a0: ptr for original operand/final result
+|	a1: ptr to PTENRM array/Unchanged
+|	a2: x/x
+|	fp0: float(ILOG)/X adjusted for SCALE (Y)
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: x/x
+|	F_SCR1:x/x
+|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
+|	L_SCR1:x/x
+|	L_SCR2:first word of X packed/Unchanged
+
+A9_str:	
+	fmovex	(%a0),%fp0	|load X from memory
+	fabsx	%fp0		|use abs(X)
+	tstw	%d5		|LAMBDA is in lower word of d5
+	bnes	sc_mul		|if neg (LAMBDA = 1), scale by mul
+	fdivx	%fp1,%fp0		|calculate X / SCALE -> Y to fp0
+	bras	A10_st		|branch to A10
+
+sc_mul:
+	tstb	BINDEC_FLG(%a6)	|check for denorm
+	beqs	A9_norm		|if norm, continue with mul
+	fmovemx %fp1-%fp1,-(%a7)	|load ETEMP with 10^ISCALE
+	movel	8(%a0),-(%a7)	|load FPTEMP with input arg
+	movel	4(%a0),-(%a7)
+	movel	(%a0),-(%a7)
+	movel	#18,%d3		|load count for busy stack
+A9_loop:
+	clrl	-(%a7)		|clear lword on stack
+	dbf	%d3,A9_loop	
+	moveb	VER_TMP(%a6),(%a7) |write current version number
+	moveb	#BUSY_SIZE-4,1(%a7) |write current busy size 
+	moveb	#0x10,0x44(%a7)	|set fcefpte[15] bit
+	movew	#0x0023,0x40(%a7)	|load cmdreg1b with mul command
+	moveb	#0xfe,0x8(%a7)	|load all 1s to cu savepc
+	frestore (%a7)+		|restore frame to fpu for completion
+	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
+	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
+	bras	A10_st
+A9_norm:
+	tstw	%d2		|test for small exp case
+	beqs	A9_con		|if zero, continue as normal
+	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
+	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
+A9_con:
+	fmulx	%fp1,%fp0		|calculate X * SCALE -> Y to fp0
+
+
+| A10. Or in INEX.
+|      If INEX is set, round error occured.  This is compensated
+|      for by 'or-ing' in the INEX2 flag to the lsb of Y.
+|
+| Register usage:
+|	Input/Output
+|	d0: FPCR with RZ mode/FPSR with INEX2 isolated
+|	d2: x/x
+|	d3: x/x
+|	d4: LEN/Unchanged
+|	d5: ICTR:LAMBDA
+|	d6: ILOG/Unchanged
+|	d7: k-factor/Unchanged
+|	a0: ptr for original operand/final result
+|	a1: ptr to PTENxx array/Unchanged
+|	a2: x/ptr to FP_SCR2(a6)
+|	fp0: Y/Y with lsb adjusted
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: x/x
+
+A10_st:	
+	fmovel	%FPSR,%d0		|get FPSR
+	fmovex	%fp0,FP_SCR2(%a6)	|move Y to memory
+	leal	FP_SCR2(%a6),%a2	|load a2 with ptr to FP_SCR2
+	btstl	#9,%d0		|check if INEX2 set
+	beqs	A11_st		|if clear, skip rest
+	oril	#1,8(%a2)	|or in 1 to lsb of mantissa
+	fmovex	FP_SCR2(%a6),%fp0	|write adjusted Y back to fpu
+
+
+| A11. Restore original FPCR; set size ext.
+|      Perform FINT operation in the user's rounding mode.  Keep
+|      the size to extended.  The sintdo entry point in the sint
+|      routine expects the FPCR value to be in USER_FPCR for
+|      mode and precision.  The original FPCR is saved in L_SCR1.
+
+A11_st:	
+	movel	USER_FPCR(%a6),L_SCR1(%a6) |save it for later
+	andil	#0x00000030,USER_FPCR(%a6) |set size to ext, 
+|					;block exceptions
+
+
+| A12. Calculate YINT = FINT(Y) according to user's rounding mode.
+|      The FPSP routine sintd0 is used.  The output is in fp0.
+|
+| Register usage:
+|	Input/Output
+|	d0: FPSR with AINEX cleared/FPCR with size set to ext
+|	d2: x/x/scratch
+|	d3: x/x
+|	d4: LEN/Unchanged
+|	d5: ICTR:LAMBDA/Unchanged
+|	d6: ILOG/Unchanged
+|	d7: k-factor/Unchanged
+|	a0: ptr for original operand/src ptr for sintdo
+|	a1: ptr to PTENxx array/Unchanged
+|	a2: ptr to FP_SCR2(a6)/Unchanged
+|	a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
+|	fp0: Y/YINT
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: x/x
+|	F_SCR1:x/x
+|	F_SCR2:Y adjusted for inex/Y with original exponent
+|	L_SCR1:x/original USER_FPCR
+|	L_SCR2:first word of X packed/Unchanged
+
+A12_st:
+	moveml	%d0-%d1/%a0-%a1,-(%a7)	|save regs used by sintd0	
+	movel	L_SCR1(%a6),-(%a7)
+	movel	L_SCR2(%a6),-(%a7)
+	leal	FP_SCR2(%a6),%a0		|a0 is ptr to F_SCR2(a6)
+	fmovex	%fp0,(%a0)		|move Y to memory at FP_SCR2(a6)
+	tstl	L_SCR2(%a6)		|test sign of original operand
+	bges	do_fint			|if pos, use Y 
+	orl	#0x80000000,(%a0)		|if neg, use -Y
+do_fint:
+	movel	USER_FPSR(%a6),-(%a7)
+	bsr	sintdo			|sint routine returns int in fp0
+	moveb	(%a7),USER_FPSR(%a6)
+	addl	#4,%a7
+	movel	(%a7)+,L_SCR2(%a6)
+	movel	(%a7)+,L_SCR1(%a6)
+	moveml	(%a7)+,%d0-%d1/%a0-%a1	|restore regs used by sint	
+	movel	L_SCR2(%a6),FP_SCR2(%a6)	|restore original exponent
+	movel	L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
+
+
+| A13. Check for LEN digits.
+|      If the int operation results in more than LEN digits,
+|      or less than LEN -1 digits, adjust ILOG and repeat from
+|      A6.  This test occurs only on the first pass.  If the
+|      result is exactly 10^LEN, decrement ILOG and divide
+|      the mantissa by 10.  The calculation of 10^LEN cannot
+|      be inexact, since all powers of ten upto 10^27 are exact
+|      in extended precision, so the use of a previous power-of-ten
+|      table will introduce no error.
+|
+|
+| Register usage:
+|	Input/Output
+|	d0: FPCR with size set to ext/scratch final = 0
+|	d2: x/x
+|	d3: x/scratch final = x
+|	d4: LEN/LEN adjusted
+|	d5: ICTR:LAMBDA/LAMBDA:ICTR
+|	d6: ILOG/ILOG adjusted
+|	d7: k-factor/Unchanged
+|	a0: pointer into memory for packed bcd string formation
+|	a1: ptr to PTENxx array/Unchanged
+|	a2: ptr to FP_SCR2(a6)/Unchanged
+|	fp0: int portion of Y/abs(YINT) adjusted
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: x/10^LEN
+|	F_SCR1:x/x
+|	F_SCR2:Y with original exponent/Unchanged
+|	L_SCR1:original USER_FPCR/Unchanged
+|	L_SCR2:first word of X packed/Unchanged
+
+A13_st:	
+	swap	%d5		|put ICTR in lower word of d5
+	tstw	%d5		|check if ICTR = 0
+	bne	not_zr		|if non-zero, go to second test
+|
+| Compute 10^(LEN-1)
+|
+	fmoves	FONE,%fp2	|init fp2 to 1.0
+	movel	%d4,%d0		|put LEN in d0
+	subql	#1,%d0		|d0 = LEN -1
+	clrl	%d3		|clr table index
+l_loop:	
+	lsrl	#1,%d0		|shift next bit into carry
+	bccs	l_next		|if zero, skip the mul
+	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
+l_next:
+	addl	#12,%d3		|inc d3 to next pwrten table entry
+	tstl	%d0		|test if LEN is zero
+	bnes	l_loop		|if not, loop
+|
+| 10^LEN-1 is computed for this test and A14.  If the input was
+| denormalized, check only the case in which YINT > 10^LEN.
+|
+	tstb	BINDEC_FLG(%a6)	|check if input was norm
+	beqs	A13_con		|if norm, continue with checking
+	fabsx	%fp0		|take abs of YINT
+	bra	test_2
+|
+| Compare abs(YINT) to 10^(LEN-1) and 10^LEN
+|
+A13_con:
+	fabsx	%fp0		|take abs of YINT
+	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^(LEN-1)
+	fbge	test_2		|if greater, do next test
+	subql	#1,%d6		|subtract 1 from ILOG
+	movew	#1,%d5		|set ICTR
+	fmovel	#rm_mode,%FPCR	|set rmode to RM
+	fmuls	FTEN,%fp2	|compute 10^LEN 
+	bra	A6_str		|return to A6 and recompute YINT
+test_2:
+	fmuls	FTEN,%fp2	|compute 10^LEN
+	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^LEN
+	fblt	A14_st		|if less, all is ok, go to A14
+	fbgt	fix_ex		|if greater, fix and redo
+	fdivs	FTEN,%fp0	|if equal, divide by 10
+	addql	#1,%d6		| and inc ILOG
+	bras	A14_st		| and continue elsewhere
+fix_ex:
+	addql	#1,%d6		|increment ILOG by 1
+	movew	#1,%d5		|set ICTR
+	fmovel	#rm_mode,%FPCR	|set rmode to RM
+	bra	A6_str		|return to A6 and recompute YINT
+|
+| Since ICTR <> 0, we have already been through one adjustment, 
+| and shouldn't have another; this is to check if abs(YINT) = 10^LEN
+| 10^LEN is again computed using whatever table is in a1 since the
+| value calculated cannot be inexact.
+|
+not_zr:
+	fmoves	FONE,%fp2	|init fp2 to 1.0
+	movel	%d4,%d0		|put LEN in d0
+	clrl	%d3		|clr table index
+z_loop:
+	lsrl	#1,%d0		|shift next bit into carry
+	bccs	z_next		|if zero, skip the mul
+	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
+z_next:
+	addl	#12,%d3		|inc d3 to next pwrten table entry
+	tstl	%d0		|test if LEN is zero
+	bnes	z_loop		|if not, loop
+	fabsx	%fp0		|get abs(YINT)
+	fcmpx	%fp2,%fp0		|check if abs(YINT) = 10^LEN
+	fbne	A14_st		|if not, skip this
+	fdivs	FTEN,%fp0	|divide abs(YINT) by 10
+	addql	#1,%d6		|and inc ILOG by 1
+	addql	#1,%d4		| and inc LEN
+	fmuls	FTEN,%fp2	| if LEN++, the get 10^^LEN
+
+
+| A14. Convert the mantissa to bcd.
+|      The binstr routine is used to convert the LEN digit 
+|      mantissa to bcd in memory.  The input to binstr is
+|      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
+|      such that the decimal point is to the left of bit 63.
+|      The bcd digits are stored in the correct position in 
+|      the final string area in memory.
+|
+|
+| Register usage:
+|	Input/Output
+|	d0: x/LEN call to binstr - final is 0
+|	d1: x/0
+|	d2: x/ms 32-bits of mant of abs(YINT)
+|	d3: x/ls 32-bits of mant of abs(YINT)
+|	d4: LEN/Unchanged
+|	d5: ICTR:LAMBDA/LAMBDA:ICTR
+|	d6: ILOG
+|	d7: k-factor/Unchanged
+|	a0: pointer into memory for packed bcd string formation
+|	    /ptr to first mantissa byte in result string
+|	a1: ptr to PTENxx array/Unchanged
+|	a2: ptr to FP_SCR2(a6)/Unchanged
+|	fp0: int portion of Y/abs(YINT) adjusted
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: 10^LEN/Unchanged
+|	F_SCR1:x/Work area for final result
+|	F_SCR2:Y with original exponent/Unchanged
+|	L_SCR1:original USER_FPCR/Unchanged
+|	L_SCR2:first word of X packed/Unchanged
+
+A14_st:	
+	fmovel	#rz_mode,%FPCR	|force rz for conversion
+	fdivx	%fp2,%fp0		|divide abs(YINT) by 10^LEN
+	leal	FP_SCR1(%a6),%a0
+	fmovex	%fp0,(%a0)	|move abs(YINT)/10^LEN to memory
+	movel	4(%a0),%d2	|move 2nd word of FP_RES to d2
+	movel	8(%a0),%d3	|move 3rd word of FP_RES to d3
+	clrl	4(%a0)		|zero word 2 of FP_RES
+	clrl	8(%a0)		|zero word 3 of FP_RES
+	movel	(%a0),%d0		|move exponent to d0
+	swap	%d0		|put exponent in lower word
+	beqs	no_sft		|if zero, don't shift
+	subil	#0x3ffd,%d0	|sub bias less 2 to make fract
+	tstl	%d0		|check if > 1
+	bgts	no_sft		|if so, don't shift
+	negl	%d0		|make exp positive
+m_loop:
+	lsrl	#1,%d2		|shift d2:d3 right, add 0s 
+	roxrl	#1,%d3		|the number of places
+	dbf	%d0,m_loop	|given in d0
+no_sft:
+	tstl	%d2		|check for mantissa of zero
+	bnes	no_zr		|if not, go on
+	tstl	%d3		|continue zero check
+	beqs	zer_m		|if zero, go directly to binstr
+no_zr:
+	clrl	%d1		|put zero in d1 for addx
+	addil	#0x00000080,%d3	|inc at bit 7
+	addxl	%d1,%d2		|continue inc
+	andil	#0xffffff80,%d3	|strip off lsb not used by 882
+zer_m:
+	movel	%d4,%d0		|put LEN in d0 for binstr call
+	addql	#3,%a0		|a0 points to M16 byte in result
+	bsr	binstr		|call binstr to convert mant
+
+
+| A15. Convert the exponent to bcd.
+|      As in A14 above, the exp is converted to bcd and the
+|      digits are stored in the final string.
+|
+|      Digits are stored in L_SCR1(a6) on return from BINDEC as:
+|
+|  	 32               16 15                0
+|	-----------------------------------------
+|  	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
+|	-----------------------------------------
+|
+| And are moved into their proper places in FP_SCR1.  If digit e4
+| is non-zero, OPERR is signaled.  In all cases, all 4 digits are
+| written as specified in the 881/882 manual for packed decimal.
+|
+| Register usage:
+|	Input/Output
+|	d0: x/LEN call to binstr - final is 0
+|	d1: x/scratch (0);shift count for final exponent packing
+|	d2: x/ms 32-bits of exp fraction/scratch
+|	d3: x/ls 32-bits of exp fraction
+|	d4: LEN/Unchanged
+|	d5: ICTR:LAMBDA/LAMBDA:ICTR
+|	d6: ILOG
+|	d7: k-factor/Unchanged
+|	a0: ptr to result string/ptr to L_SCR1(a6)
+|	a1: ptr to PTENxx array/Unchanged
+|	a2: ptr to FP_SCR2(a6)/Unchanged
+|	fp0: abs(YINT) adjusted/float(ILOG)
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: 10^LEN/Unchanged
+|	F_SCR1:Work area for final result/BCD result
+|	F_SCR2:Y with original exponent/ILOG/10^4
+|	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
+|	L_SCR2:first word of X packed/Unchanged
+
+A15_st:	
+	tstb	BINDEC_FLG(%a6)	|check for denorm
+	beqs	not_denorm
+	ftstx	%fp0		|test for zero
+	fbeq	den_zero	|if zero, use k-factor or 4933
+	fmovel	%d6,%fp0		|float ILOG
+	fabsx	%fp0		|get abs of ILOG
+	bras	convrt
+den_zero:
+	tstl	%d7		|check sign of the k-factor
+	blts	use_ilog	|if negative, use ILOG
+	fmoves	F4933,%fp0	|force exponent to 4933
+	bras	convrt		|do it
+use_ilog:
+	fmovel	%d6,%fp0		|float ILOG
+	fabsx	%fp0		|get abs of ILOG
+	bras	convrt
+not_denorm:
+	ftstx	%fp0		|test for zero
+	fbne	not_zero	|if zero, force exponent
+	fmoves	FONE,%fp0	|force exponent to 1
+	bras	convrt		|do it
+not_zero:	
+	fmovel	%d6,%fp0		|float ILOG
+	fabsx	%fp0		|get abs of ILOG
+convrt:
+	fdivx	24(%a1),%fp0	|compute ILOG/10^4
+	fmovex	%fp0,FP_SCR2(%a6)	|store fp0 in memory
+	movel	4(%a2),%d2	|move word 2 to d2
+	movel	8(%a2),%d3	|move word 3 to d3
+	movew	(%a2),%d0		|move exp to d0
+	beqs	x_loop_fin	|if zero, skip the shift
+	subiw	#0x3ffd,%d0	|subtract off bias
+	negw	%d0		|make exp positive
+x_loop:
+	lsrl	#1,%d2		|shift d2:d3 right 
+	roxrl	#1,%d3		|the number of places
+	dbf	%d0,x_loop	|given in d0
+x_loop_fin:
+	clrl	%d1		|put zero in d1 for addx
+	addil	#0x00000080,%d3	|inc at bit 6
+	addxl	%d1,%d2		|continue inc
+	andil	#0xffffff80,%d3	|strip off lsb not used by 882
+	movel	#4,%d0		|put 4 in d0 for binstr call
+	leal	L_SCR1(%a6),%a0	|a0 is ptr to L_SCR1 for exp digits
+	bsr	binstr		|call binstr to convert exp
+	movel	L_SCR1(%a6),%d0	|load L_SCR1 lword to d0 
+	movel	#12,%d1		|use d1 for shift count
+	lsrl	%d1,%d0		|shift d0 right by 12
+	bfins	%d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
+	lsrl	%d1,%d0		|shift d0 right by 12
+	bfins	%d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 
+	tstb	%d0		|check if e4 is zero
+	beqs	A16_st		|if zero, skip rest
+	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
+
+
+| A16. Write sign bits to final string.
+|	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
+|
+| Register usage:
+|	Input/Output
+|	d0: x/scratch - final is x
+|	d2: x/x
+|	d3: x/x
+|	d4: LEN/Unchanged
+|	d5: ICTR:LAMBDA/LAMBDA:ICTR
+|	d6: ILOG/ILOG adjusted
+|	d7: k-factor/Unchanged
+|	a0: ptr to L_SCR1(a6)/Unchanged
+|	a1: ptr to PTENxx array/Unchanged
+|	a2: ptr to FP_SCR2(a6)/Unchanged
+|	fp0: float(ILOG)/Unchanged
+|	fp1: 10^ISCALE/Unchanged
+|	fp2: 10^LEN/Unchanged
+|	F_SCR1:BCD result with correct signs
+|	F_SCR2:ILOG/10^4
+|	L_SCR1:Exponent digits on return from binstr
+|	L_SCR2:first word of X packed/Unchanged
+
+A16_st:
+	clrl	%d0		|clr d0 for collection of signs
+	andib	#0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 
+	tstl	L_SCR2(%a6)	|check sign of original mantissa
+	bges	mant_p		|if pos, don't set SM
+	moveql	#2,%d0		|move 2 in to d0 for SM
+mant_p:
+	tstl	%d6		|check sign of ILOG
+	bges	wr_sgn		|if pos, don't set SE
+	addql	#1,%d0		|set bit 0 in d0 for SE 
+wr_sgn:
+	bfins	%d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
+
+| Clean up and restore all registers used.
+
+	fmovel	#0,%FPSR		|clear possible inex2/ainex bits
+	fmovemx (%a7)+,%fp0-%fp2
+	moveml	(%a7)+,%d2-%d7/%a2
+	rts
+
+	|end

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov with Sam's (original) version
of this