patch-2.1.126 linux/arch/mips/kernel/softfp.S
Next file: linux/arch/mips/kernel/syscall.c
Previous file: linux/arch/mips/kernel/signal.c
Back to the patch index
Back to the overall index
- Lines: 668
- Date:
Tue Oct 20 13:52:54 1998
- Orig file:
v2.1.125/linux/arch/mips/kernel/softfp.S
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.1.125/linux/arch/mips/kernel/softfp.S linux/arch/mips/kernel/softfp.S
@@ -0,0 +1,667 @@
+/* $Id: softfp.S,v 1.1 1998/07/14 09:33:48 ralf Exp $
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 1998 by Ralf Baechle
+ *
+ * For now it's just a crude hack good enough to run certain fp programs like
+ * Mozilla.
+ * XXX: Handle MIPS II/III/IV/V enhancements, exceptions, ...
+ */
+#include <asm/regdef.h>
+#include <asm/asm.h>
+
+#ifndef __KERNEL__
+#define printk printf
+#endif
+
+#define LOCK_KERNEL
+#define UNLOCK_KERNEL
+
+/*
+ * This duplicates definitions from <linux/kernel.h>.
+ */
+#define KERN_EMERG "<0>" /* system is unusable */
+#define KERN_ALERT "<1>" /* action must be taken immediately */
+#define KERN_CRIT "<2>" /* critical conditions */
+#define KERN_ERR "<3>" /* error conditions */
+#define KERN_WARNING "<4>" /* warning conditions */
+#define KERN_NOTICE "<5>" /* normal but significant condition */
+#define KERN_INFO "<6>" /* informational */
+#define KERN_DEBUG "<7>" /* debug-level messages */
+
+/*
+ * This duplicates definitions from <asm/signal.h>
+ */
+#define SIGILL 4 /* Illegal instruction (ANSI). */
+
+/*
+ * Definitions about the instruction format
+ */
+#define fd_shift 6
+#define fr_shift 21
+#define fs_shift 11
+#define ft_shift 16
+
+/*
+ * NaNs as use by the MIPS architecture
+ */
+#define S_QNaN 0x7fbfffff
+#define D_QNaN 0x7ff7ffffffffffff
+#define W_QNaN 0x7fffffff
+#define L_QNaN 0x7fffffffffffffff
+
+/*
+ * Checking for NaNs
+ */
+#define S_is_QNaN(reg,res) \
+ sll res, reg, S_F_size - S_F_bits
+#define D_is_QNaN(reg1,reg2,res) \
+ sll res, reg1, (D_F_size - 32) - (D_F_bits - 32); \
+ or res, reg2
+
+/*
+ * Checking for Denorms
+ */
+#define S_is_Denorm(reg,res) \
+ li res, 1 << (S_F_bits - 1); \
+ and reg, res
+
+/*
+ * Some constants that define the properties of single precission numbers.
+ */
+#define S_M_prec 24
+#define S_E_max 127
+#define S_E_min -126
+#define S_E_bias 127
+#define S_E_bits 8
+#define S_F_bits 23
+#define S_F_size 32
+
+/* Set temp0, if exponent of reg is S_E_max + 1. */
+#define S_is_E_max(reg,temp0,temp1) \
+ li temp0, (S_E_max + 1 + S_E_bias) << S_F_bits; \
+ and temp1, temp0, reg; \
+ seq temp0, temp1 /* temp0 != 0 if NaN */
+
+/* Clear temp0, if exponent of reg is S_E_min - 1. */
+#define S_is_E_min(reg,temp0) \
+ li temp0, (S_E_min - 1 + S_E_bias) << S_F_bits; \
+ and temp0, reg /* temp0 == 0 if denorm or zero */
+
+/* Set temp0 if reg is a NaN assuming S_is_E_max is true */
+#define S_get_F(reg,temp0) \
+ li temp0, (1 << S_F_bits) - 1; \
+ and temp0, reg /* temp0 != 0 if NaN */
+
+/* Set res if fraction of reg is != 0. */
+#define S_is_Inf(reg,res) \
+ li res, (1 << S_F_bits) - 1; \
+ and res, reg /* temp0 == 0 if Inf */
+
+
+/*
+ * Some constants that define the properties of double precission numbers.
+ */
+#define D_M_prec 53
+#define D_E_max 1023
+#define D_E_min -1022
+#define D_E_bias 1023
+#define D_E_bits 8
+#define D_F_bits 52
+#define D_F_size 64
+
+/* Set temp0, if exponent of reg1/reg2 is D_E_max. */
+#define D_is_E_max(reg1,reg2,temp0,temp1) \
+ li temp0, (D_E_max + 1 + D_E_bias) << (D_F_bits - 32); \
+ and temp1, temp0, reg1; \
+ seq temp0, temp1 /* temp0 != 0 if NaN */
+
+/* Clear temp0, if exponent of reg is D_E_min. */
+#define D_is_E_min(reg1,reg2,res) \
+ li res, (D_E_min + 1 + D_E_bias) << (D_F_bits - 32); \
+ and res, reg1 /* temp0 == 0 if NaN or zero */
+
+/* Set res if reg is a NaN assuming S_is_E_max is true */
+#define D_get_F(reg1,reg2,res) \
+ li res, (1 << (D_F_bits - 32)) - 1; \
+ and res, reg1 /* temp0 != 0 if NaN */
+
+/* Set temp0 if reg1/reg2 is a NaN */
+#define D_is_NAN(reg1,reg2,temp0,temp1) \
+ li temp0, (1 << (D_F_bits - 32) - 1; \
+ and temp0, reg1; \
+ or temp0, reg2; \
+ sne temp0, zero, temp0 /* temp0 != 0 if NaN */
+
+/* Set res if fraction of reg1/reg2 is != 0. */
+#define D_is_Inf(reg1,reg2,res) \
+ li res, (1 << (D_F_bits - 32)) - 1; \
+ and res, reg1; \
+ or res, reg2 /* temp0 == 0 if Inf */
+
+/* Complain about yet unhandled instruction. */
+#define BITCH(insn) \
+insn: LOCK_KERNEL; \
+ la a1, 8f; \
+ TEXT(#insn); \
+ la a1, nosim; \
+ UNLOCK_KERNEL; \
+ j done
+
+ .data
+nosim: .asciz KERN_DEBUG "Don't know how to simulate %s instruction\n"
+ .previous
+
+/*
+ * When we come here, we've saved some of the integer registers and
+ * reenabled interrupts.
+ */
+LEAF(simfp)
+ .set noreorder
+ .cpload $25
+ .set reorder
+
+ subu sp, 16
+ .cprestore 20
+ sw ra, 16(sp)
+
+ /* For now we assume that we get the opcode to simulate passed in as
+ an argument. */
+ move t0, a0
+
+ /*
+ * First table lookup using insn[5:0]
+ */
+ la t1, lowtab
+ andi t2, t0, 0x3f
+ sll t2, t2, 2
+ addu t1, t2
+ lw t1, (t1)
+ jr t1
+ END(simfp)
+
+/*
+ * We only decode the lower 3 of the 5 bit in the fmt field. That way we
+ * can keep the jump table significantly shorter.
+ */
+#define FMT_switch(insn,opc,temp0,temp1) \
+insn: srl temp0, opc, 19; \
+ andi temp0, 0x1c; \
+ la temp1, insn ## .tab; \
+ addu temp0, temp1; \
+ lw temp0, (temp0); \
+ jr temp0; \
+ \
+ .data; \
+insn ## .tab: \
+ .word insn ## .s, insn ## .d, unimp, unimp; \
+ .word insn ## .w, insn ## .l, unimp, unimp; \
+ .previous
+
+ BITCH(add)
+ BITCH(sub)
+ BITCH(mul)
+ BITCH(div)
+ BITCH(sqrt)
+ BITCH(abs)
+ BITCH(mov)
+ BITCH(neg)
+ BITCH(round.l)
+ BITCH(trunc.l)
+ BITCH(ceil.l)
+ BITCH(floor.l)
+ BITCH(round.w)
+ BITCH(trunc.w)
+ BITCH(ceil.w)
+ BITCH(floor.w)
+ BITCH(cvt.s)
+ BITCH(cvt.d)
+
+/* ------------------------------------------------------------------------ */
+
+FMT_switch(cvt.w,t0,t1,t2)
+
+/* Convert a single fp to a fixed point integer. */
+cvt.w.s:
+ srl t1, t0, fs_shift # Get source register
+ andi t1, 31
+ jal s_get_fpreg
+
+ S_is_E_max(t1,t2,t3)
+ beqz t2, 3f
+ /* Might be a NaN or Inf. */
+ S_get_F(t1,t2)
+ beqz t2, 2f
+
+ /* It's a NaN. IEEE says undefined. */
+ /* Is it a QNaN? Then the result is a QNaN as well. */
+ S_is_QNaN(t1,t2)
+ bltz t2, 1f
+
+ /* XXX Ok, it's a SNaN. Signal invalid exception, if enabled.
+ For now we don't signal and supply a QNaN for result. */
+
+1: li t2, W_QNaN
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+ j done
+2:
+
+ S_is_Inf(t1,t2)
+ bnez t2, 2f
+
+ /* It's +/- Inf. Set register to +/- max. integer. */
+ /* XXX Send invalid operation exception instead, if enabled. */
+ srl t1, t1, 31 # Extract sign bit
+ li t2, 0x7fffffff
+ addu t2, t1
+
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+ j done
+2:
+3:
+
+ /* But then it might be a denorm or zero? */
+ S_is_E_min(t1,t2)
+ bnez t2, 2f
+
+ /* Ok, it's a denorm or zero. */
+ S_get_F(t1,t2)
+ beqz t2, 1f
+
+ /* It's a denorm. */
+ /* XXX Should be signaling inexact exception, if enabled. */
+ /* Fall through. */
+1:
+ /* Yes, it is a denorm or zero. Supply a zero as result. */
+ move t2, zero
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+ j done
+2:
+
+ /* XXX Ok, it's a normal number. We don't handle that case yet.
+ If we have fp hardware this case is unreached. Add this for
+ full fp simulation. */
+
+ /* Done, return. */
+ lw ra, 16(sp)
+ addu sp, 16
+ jr ra
+
+/* Convert a double fp to a fixed point integer. */
+cvt.w.d:
+ srl t1, t0, fs_shift # Get source register
+ andi t1, 31
+ jal d_get_fpreg
+
+ D_is_E_max(t1,t2,t3,t4)
+ beqz t3, 3f
+
+ /* Might be a NaN or Inf. */
+ D_get_F(t1,t2,t3)
+ or t3, t2
+ beqz t3, 2f
+
+ /* It's a NaN. IEEE says undefined. */
+ /* Is it a QNaN? Then the result is a QNaN as well. */
+ D_is_QNaN(t1,t2,t3)
+ bltz t3, 1f
+
+ /* XXX Ok, it's a SNaN. Signal invalid exception, if enabled.
+ For now we don't signal and supply a QNaN for result. */
+
+1: li t2, W_QNaN
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+ j done
+2:
+
+ D_is_Inf(t1,t2,t3)
+ bnez t3, 2f
+
+ /* It's +/- Inf. Set register to +/- max. integer. */
+ /* XXX Send invalid operation exception instead, if enabled. */
+ srl t1, t1, 31 # Extract sign bit
+ li t2, 0x7fffffff
+ addu t2, t1
+
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+ j done
+2:
+3:
+
+ /* But then it might be a denorm or zero? */
+ D_is_E_min(t1,t2,t3)
+ bnez t3, 2f
+
+ /* Ok, it's a denorm or zero. */
+ D_get_F(t1,t2,t3)
+ or t3, t2
+ beqz t3, 1f
+
+ /* It's a denorm. */
+ /* XXX Should be signaling inexact exception, if enabled. */
+ /* Fall through. */
+1:
+ /* Yes, it is a denorm or zero. Supply a zero as result. */
+ move t2, zero
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+ j done
+2:
+
+ /* XXX Ok, it's a normal number. We don't handle that case yet.
+ If we have fp hardware this case is only reached if the value
+ of the source register exceeds the range which is representable
+ in a single precission register. For now we kludge by returning
+ +/- maxint and don't signal overflow. */
+
+ srl t1, t1, 31 # Extract sign bit
+ li t2, 0x7fffffff
+ addu t2, t1
+
+ srl t1, t0, fd_shift # Put result register
+ andi t1, 31
+ jal s_put_fpreg
+
+ /* Done, return. */
+ lw ra, 16(sp)
+ addu sp, 16
+ jr ra
+
+cvt.w.w = unimp # undefined result
+cvt.w.l = unimp # undefined result
+
+/* MIPS III extension, no need to handle for 32bit OS. */
+cvt.l = unimp
+
+/* ------------------------------------------------------------------------ */
+
+ BITCH(c.f)
+ BITCH(c.un)
+ BITCH(c.eq)
+ BITCH(c.ueq)
+ BITCH(c.olt)
+ BITCH(c.ult)
+ BITCH(c.ole)
+ BITCH(c.ule)
+ BITCH(c.sf)
+ BITCH(c.ngle)
+ BITCH(c.seq)
+ BITCH(c.ngl)
+ BITCH(c.lt)
+ BITCH(c.nge)
+ BITCH(c.le)
+ BITCH(c.ngt)
+
+/* Get the single precission register which's number is in t1. */
+s_get_fpreg:
+ .set noat
+ sll AT, t1, 2
+ sll t1, 3
+ addu t1, AT
+ la AT, 1f
+ addu AT, t1
+ jr AT
+ .set at
+
+1: mfc1 t1, $0
+ jr ra
+ mfc1 t1, $1
+ jr ra
+ mfc1 t1, $2
+ jr ra
+ mfc1 t1, $3
+ jr ra
+ mfc1 t1, $4
+ jr ra
+ mfc1 t1, $5
+ jr ra
+ mfc1 t1, $6
+ jr ra
+ mfc1 t1, $7
+ jr ra
+ mfc1 t1, $8
+ jr ra
+ mfc1 t1, $9
+ jr ra
+ mfc1 t1, $10
+ jr ra
+ mfc1 t1, $11
+ jr ra
+ mfc1 t1, $12
+ jr ra
+ mfc1 t1, $13
+ jr ra
+ mfc1 t1, $14
+ jr ra
+ mfc1 t1, $15
+ jr ra
+ mfc1 t1, $16
+ jr ra
+ mfc1 t1, $17
+ jr ra
+ mfc1 t1, $18
+ jr ra
+ mfc1 t1, $19
+ jr ra
+ mfc1 t1, $20
+ jr ra
+ mfc1 t1, $21
+ jr ra
+ mfc1 t1, $22
+ jr ra
+ mfc1 t1, $23
+ jr ra
+ mfc1 t1, $24
+ jr ra
+ mfc1 t1, $25
+ jr ra
+ mfc1 t1, $26
+ jr ra
+ mfc1 t1, $27
+ jr ra
+ mfc1 t1, $28
+ jr ra
+ mfc1 t1, $29
+ jr ra
+ mfc1 t1, $30
+ jr ra
+ mfc1 t1, $31
+ jr ra
+
+/*
+ * Put the value in t2 into the single precission register which's number
+ * is in t1.
+ */
+s_put_fpreg:
+ .set noat
+ sll AT, t1, 2
+ sll t1, 3
+ addu t1, AT
+ la AT, 1f
+ addu AT, t1
+ jr AT
+ .set at
+
+1: mtc1 t2, $0
+ jr ra
+ mtc1 t2, $1
+ jr ra
+ mtc1 t2, $2
+ jr ra
+ mtc1 t2, $3
+ jr ra
+ mtc1 t2, $4
+ jr ra
+ mtc1 t2, $5
+ jr ra
+ mtc1 t2, $6
+ jr ra
+ mtc1 t2, $7
+ jr ra
+ mtc1 t2, $8
+ jr ra
+ mtc1 t2, $9
+ jr ra
+ mtc1 t2, $10
+ jr ra
+ mtc1 t2, $11
+ jr ra
+ mtc1 t2, $12
+ jr ra
+ mtc1 t2, $13
+ jr ra
+ mtc1 t2, $14
+ jr ra
+ mtc1 t2, $15
+ jr ra
+ mtc1 t2, $16
+ jr ra
+ mtc1 t2, $17
+ jr ra
+ mtc1 t2, $18
+ jr ra
+ mtc1 t2, $19
+ jr ra
+ mtc1 t2, $20
+ jr ra
+ mtc1 t2, $21
+ jr ra
+ mtc1 t2, $22
+ jr ra
+ mtc1 t2, $23
+ jr ra
+ mtc1 t2, $24
+ jr ra
+ mtc1 t2, $25
+ jr ra
+ mtc1 t2, $26
+ jr ra
+ mtc1 t2, $27
+ jr ra
+ mtc1 t2, $28
+ jr ra
+ mtc1 t2, $29
+ jr ra
+ mtc1 t2, $30
+ jr ra
+ mtc1 t2, $31
+ jr ra
+
+/* Get the double precission register which's number is in t1 into t1/t2. */
+d_get_fpreg:
+ .set noat
+ sll t1, 3
+ la AT, 1f
+ addu AT, t1
+ jr AT
+ .set at
+
+1: mfc1 t1, $0
+ mfc1 t2, $1
+ jr ra
+ mfc1 t1, $2
+ mfc1 t2, $3
+ jr ra
+ mfc1 t1, $4
+ mfc1 t2, $5
+ jr ra
+ mfc1 t1, $6
+ mfc1 t2, $7
+ jr ra
+ mfc1 t1, $8
+ mfc1 t2, $9
+ jr ra
+ mfc1 t1, $10
+ mfc1 t2, $11
+ jr ra
+ mfc1 t1, $12
+ mfc1 t2, $13
+ jr ra
+ mfc1 t1, $14
+ mfc1 t2, $15
+ jr ra
+ mfc1 t1, $16
+ mfc1 t2, $17
+ jr ra
+ mfc1 t1, $18
+ mfc1 t2, $19
+ jr ra
+ mfc1 t1, $20
+ mfc1 t2, $21
+ jr ra
+ mfc1 t1, $22
+ mfc1 t2, $23
+ jr ra
+ mfc1 t1, $24
+ mfc1 t2, $25
+ jr ra
+ mfc1 t1, $26
+ mfc1 t2, $27
+ jr ra
+ mfc1 t1, $28
+ mfc1 t2, $29
+ jr ra
+ mfc1 t1, $30
+ mfc1 t2, $31
+ jr ra
+
+/*
+ * Send an invalid operation exception.
+ */
+invalid:
+ lw ra, 16(sp)
+ addu sp, 16
+ jr ra
+
+/*
+ * Done, just skip over the current instruction
+ */
+done:
+ lw ra, 16(sp)
+ addu sp, 16
+ jr ra
+
+unimp:
+ /* We've run into an yet unknown instruction. This happens either
+ on new, yet unsupported CPU types or when the faulting instruction
+ is being executed for cache but has been overwritten in memory. */
+ LOCK_KERNEL
+ move a0, t0
+ PRINT(KERN_DEBUG "FP support: unknown fp op %08lx, ")
+ PRINT("please mail to ralf@gnu.org.\n")
+
+ li a0, SIGILL # Die, sucker ...
+ move a1, $28
+ jal force_sig
+ UNLOCK_KERNEL
+
+ lw ra, 16(sp)
+ addu sp, 16
+ jr ra
+
+/*
+ * Jump table for the lowest 6 bits of a cp1 instruction.
+ */
+ .data
+lowtab: .word add, sub, mul, div, sqrt, abs, mov, neg
+ .word round.l,trunc.l,ceil.l,floor.l,round.w,trunc.w,ceil.w,floor.w
+ .word unimp, unimp, unimp, unimp, unimp, unimp, unimp, unimp
+ .word unimp, unimp, unimp, unimp, unimp, unimp, unimp, unimp
+ .word cvt.s, cvt.d, unimp, unimp, cvt.w, cvt.l, unimp, unimp
+ .word unimp, unimp, unimp, unimp, unimp, unimp, unimp, unimp
+ .word c.f, c.un, c.eq, c.ueq, c.olt, c.ult, c.ole, c.ule
+ .word c.sf, c.ngle,c.seq, c.ngl, c.lt, c.nge, c.le, c.ngt
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov