patch-2.1.48 linux/arch/ppc/kernel/prep_time.c
Next file: linux/arch/ppc/kernel/process.c
Previous file: linux/arch/ppc/kernel/prep_setup.c
Back to the patch index
Back to the overall index
- Lines: 316
- Date:
Thu Jul 31 13:09:17 1997
- Orig file:
v2.1.47/linux/arch/ppc/kernel/prep_time.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.1.47/linux/arch/ppc/kernel/prep_time.c linux/arch/ppc/kernel/prep_time.c
@@ -0,0 +1,315 @@
+/*
+ * linux/arch/i386/kernel/time.c
+ *
+ * Copyright (C) 1991, 1992, 1995 Linus Torvalds
+ *
+ * Adapted for PowerPC (PreP) by Gary Thomas
+ * Modified by Cort Dougan (cort@cs.nmt.edu)
+ * copied and modified from intel version
+ *
+ */
+#include <linux/config.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/param.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/interrupt.h>
+#include <linux/timex.h>
+#include <linux/kernel_stat.h>
+#include <linux/mc146818rtc.h>
+
+#include <asm/segment.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+
+/* last time the cmos clock got updated */
+static long last_rtc_update = 0;
+static int set_rtc_mmss(unsigned long nowtime);
+unsigned long get_cmos_time(void);
+static inline unsigned long mktime(unsigned int, unsigned int,unsigned int,
+ unsigned int, unsigned int, unsigned int);
+#define TIMER_IRQ 0
+
+/* Cycle counter value at the previous timer interrupt.. */
+static unsigned long long last_timer_cc = 0;
+static unsigned long long init_timer_cc = 0;
+
+#define TICK_SIZE tick
+#define FEBRUARY 2
+#define STARTOFTIME 1970
+#define SECDAY 86400L
+#define SECYR (SECDAY * 365)
+#define leapyear(year) ((year) % 4 == 0)
+#define days_in_year(a) (leapyear(a) ? 366 : 365)
+#define days_in_month(a) (month_days[(a) - 1])
+
+static int month_days[12] = {
+ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+static unsigned long do_slow_gettimeoffset(void)
+{
+ int count;
+ unsigned long offset = 0;
+
+ /* timer count may underflow right here */
+ outb_p(0x00, 0x43); /* latch the count ASAP */
+ count = inb_p(0x40); /* read the latched count */
+ count |= inb(0x40) << 8;
+ /* we know probability of underflow is always MUCH less than 1% */
+ if (count > (LATCH - LATCH/100)) {
+ /* check for pending timer interrupt */
+ outb_p(0x0a, 0x20);
+ if (inb(0x20) & 1)
+ offset = TICK_SIZE;
+ }
+ count = ((LATCH-1) - count) * TICK_SIZE;
+ count = (count + LATCH/2) / LATCH;
+ return offset + count;
+}
+
+static unsigned long (*do_gettimeoffset)(void) = do_slow_gettimeoffset;
+
+/*
+ * This version of gettimeofday has near microsecond resolution.
+ */
+void do_gettimeofday(struct timeval *tv)
+{
+ unsigned long flags;
+ save_flags(flags);
+ cli();
+ *tv = xtime;
+ tv->tv_usec += do_gettimeoffset();
+ if (tv->tv_usec >= 1000000) {
+ tv->tv_usec -= 1000000;
+ tv->tv_sec++;
+ }
+ restore_flags(flags);
+}
+
+void do_settimeofday(struct timeval *tv)
+{
+ cli();
+ tv->tv_usec -= do_gettimeoffset();
+
+ if (tv->tv_usec < 0) {
+ tv->tv_usec += 1000000;
+ tv->tv_sec--;
+ }
+
+ xtime = *tv;
+ time_state = TIME_ERROR;
+ time_maxerror = 0x70000000;
+ time_esterror = 0x70000000;
+ sti();
+}
+
+void to_tm(int tim, struct rtc_time * tm)
+{
+ register int i;
+ register long hms, day;
+
+ day = tim / SECDAY;
+ hms = tim % SECDAY;
+
+ /* Hours, minutes, seconds are easy */
+ tm->tm_hour = hms / 3600;
+ tm->tm_min = (hms % 3600) / 60;
+ tm->tm_sec = (hms % 3600) % 60;
+
+ /* Number of years in days */
+ for (i = STARTOFTIME; day >= days_in_year(i); i++)
+ day -= days_in_year(i);
+ tm->tm_year = i;
+
+ /* Number of months in days left */
+ if (leapyear(tm->tm_year))
+ days_in_month(FEBRUARY) = 29;
+ for (i = 1; day >= days_in_month(i); i++)
+ day -= days_in_month(i);
+ days_in_month(FEBRUARY) = 28;
+ tm->tm_mon = i;
+
+ /* Days are what is left over (+1) from all that. */
+ tm->tm_mday = day + 1;
+}
+
+/*
+ * Set the hardware clock. -- Cort
+ */
+static int set_rtc_mmss(unsigned long nowtime)
+{
+ int retval = 0;
+ int real_seconds, real_minutes, cmos_minutes;
+ unsigned char save_control, save_freq_select;
+ struct rtc_time tm;
+
+ to_tm(nowtime, &tm);
+
+ save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
+ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
+
+ save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
+ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
+
+ tm.tm_year -= 1900;
+ if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+ BIN_TO_BCD(tm.tm_sec);
+ BIN_TO_BCD(tm.tm_min);
+ BIN_TO_BCD(tm.tm_hour);
+ BIN_TO_BCD(tm.tm_mon);
+ BIN_TO_BCD(tm.tm_mday);
+ BIN_TO_BCD(tm.tm_year);
+ }
+ CMOS_WRITE(tm.tm_sec,RTC_SECONDS);
+ CMOS_WRITE(tm.tm_min,RTC_MINUTES);
+ CMOS_WRITE(tm.tm_hour,RTC_HOURS);
+ CMOS_WRITE(tm.tm_mon,RTC_MONTH);
+ CMOS_WRITE(tm.tm_mday,RTC_DAY_OF_MONTH);
+ CMOS_WRITE(tm.tm_year,RTC_YEAR);
+
+ /* The following flags have to be released exactly in this order,
+ * otherwise the DS12887 (popular MC146818A clone with integrated
+ * battery and quartz) will not reset the oscillator and will not
+ * update precisely 500 ms later. You won't find this mentioned in
+ * the Dallas Semiconductor data sheets, but who believes data
+ * sheets anyway ... -- Markus Kuhn
+ */
+ CMOS_WRITE(save_control, RTC_CONTROL);
+ CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
+
+ if ( (time_state == TIME_ERROR) || (time_state == TIME_BAD) )
+ time_state = TIME_OK;
+ return 0;
+}
+
+unsigned long get_cmos_time(void)
+{
+ unsigned int year, mon, day, hour, min, sec;
+ int i;
+
+ /* The Linux interpretation of the CMOS clock register contents:
+ * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
+ * RTC registers show the second which has precisely just started.
+ * Let's hope other operating systems interpret the RTC the same way.
+ */
+ /* read RTC exactly on falling edge of update flag */
+ for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
+ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
+ break;
+ for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
+ if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
+ break;
+ do { /* Isn't this overkill ? UIP above should guarantee consistency */
+ sec = CMOS_READ(RTC_SECONDS);
+ min = CMOS_READ(RTC_MINUTES);
+ hour = CMOS_READ(RTC_HOURS);
+ day = CMOS_READ(RTC_DAY_OF_MONTH);
+ mon = CMOS_READ(RTC_MONTH);
+ year = CMOS_READ(RTC_YEAR);
+ } while (sec != CMOS_READ(RTC_SECONDS));
+ if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
+ {
+ BCD_TO_BIN(sec);
+ BCD_TO_BIN(min);
+ BCD_TO_BIN(hour);
+ BCD_TO_BIN(day);
+ BCD_TO_BIN(mon);
+ BCD_TO_BIN(year);
+ }
+ if ((year += 1900) < 1970)
+ year += 100;
+ return mktime(year, mon, day, hour, min, sec);
+}
+
+/*
+ * timer_interrupt() needs to keep up the real-time clock,
+ * as well as call the "do_timer()" routine every clocktick
+ */
+static inline void timer_interrupt(int irq, void *dev, struct pt_regs * regs)
+{
+ do_timer(regs);
+
+ /* update the hw clock if:
+ * the time is marked out of sync (TIME_ERROR)
+ * or ~11 minutes have expired since the last update -- Cort
+ * If we have an externally synchronized Linux clock, then update
+ * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
+ * called as close as possible to 500 ms before the new second starts.
+ */
+ if ( time_state == TIME_BAD ||
+ xtime.tv_sec > last_rtc_update + 660 )
+ /*if (time_state != TIME_BAD && xtime.tv_sec > last_rtc_update + 660 &&
+ xtime.tv_usec > 500000 - (tick >> 1) &&
+ xtime.tv_usec < 500000 + (tick >> 1))*/
+ if (set_rtc_mmss(xtime.tv_sec) == 0)
+ last_rtc_update = xtime.tv_sec;
+ else
+ last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
+
+
+#ifdef CONFIG_HEARTBEAT
+ /* use hard disk LED as a heartbeat instead -- much more useful
+ for debugging -- Cort */
+ switch(kstat.interrupts[0] % 101)
+ {
+ /* act like an actual heart beat -- ie thump-thump-pause... */
+ case 0:
+ case 20:
+ outb(1,IBM_HDD_LED);
+ break;
+ case 7:
+ case 27:
+ outb(0,IBM_HDD_LED);
+ break;
+ case 100:
+ break;
+ }
+#endif
+}
+
+
+/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
+ * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
+ * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
+ *
+ * [For the Julian calendar (which was used in Russia before 1917,
+ * Britain & colonies before 1752, anywhere else before 1582,
+ * and is still in use by some communities) leave out the
+ * -year/100+year/400 terms, and add 10.]
+ *
+ * This algorithm was first published by Gauss (I think).
+ *
+ * WARNING: this function will overflow on 2106-02-07 06:28:16 on
+ * machines were long is 32-bit! (However, as time_t is signed, we
+ * will already get problems at other places on 2038-01-19 03:14:08)
+ */
+static inline unsigned long mktime(unsigned int year, unsigned int mon,
+ unsigned int day, unsigned int hour,
+ unsigned int min, unsigned int sec)
+{
+ if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */
+ mon += 12; /* Puts Feb last since it has leap day */
+ year -= 1;
+ }
+ return (((
+ (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) +
+ year*365 - 719499
+ )*24 + hour /* now have hours */
+ )*60 + min /* now have minutes */
+ )*60 + sec; /* finally seconds */
+}
+
+void time_init(void)
+{
+ void (*irq_handler)(int, void *,struct pt_regs *);
+ xtime.tv_sec = get_cmos_time();
+ xtime.tv_usec = 0;
+
+ /* If we have the CPU hardware time counters, use them */
+ irq_handler = timer_interrupt;
+ if (request_irq(TIMER_IRQ, irq_handler, 0, "timer", NULL) != 0)
+ panic("Could not allocate timer IRQ!");
+}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov