patch-2.1.72 linux/Documentation/filesystems/coda.txt

Next file: linux/MAINTAINERS
Previous file: linux/Documentation/devices.txt
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.1.71/linux/Documentation/filesystems/coda.txt linux/Documentation/filesystems/coda.txt
@@ -0,0 +1,1427 @@
+  The Venus kernel interface
+  Peter J. Braam
+  v1.0, Nov 9, 1997
+
+  This document describes the communication between Venus and kernel
+  level file system code needed for the operation of the Coda filesys-
+  tem.  This version document is meant to describe the current interface
+  (version 1.0) as well as improvements we envisage.
+  ______________________________________________________________________
+
+  Table of Contents:
+
+  1.      Introduction
+
+  2.      Servicing Coda filesystem calls
+
+  3.      The message layer
+
+  3.1.    Implementation details
+
+  4.      The interface at the call level
+
+  4.1.    Data structures shared by the kernel and Venus
+
+  4.2.    The pioctl interface
+
+  4.3.    root
+
+  4.4.    lookup
+
+  4.5.    getattr
+
+  4.6.    setattr
+
+  4.7.    access
+
+  4.8.    create
+
+  4.9.    mkdir
+
+  4.10.   link
+
+  4.11.   synlink
+
+  4.12.   remove
+
+  4.13.   rmdir
+
+  4.14.   readlink
+
+  4.15.   open
+
+  4.16.   close
+
+  4.17.   ioctl
+
+  4.18.   rename
+
+  4.19.   readdir
+
+  4.20.   vget
+
+  4.21.   fsync
+
+  4.22.   inactive
+
+  4.23.   rdwr
+
+  4.24.   odymount
+
+  4.25.   ody_lookup
+
+  4.26.   ody_expand
+
+  4.27.   prefetch
+
+  4.28.   signal
+
+  5.      The minicache and downcalls
+
+  5.1.    INVALIDATE
+
+  5.2.    FLUSH
+
+  5.3.    PURGEUSER
+
+  5.4.    ZAPFILE
+
+  5.5.    ZAPDIR
+
+  5.6.    ZAPVNODE
+
+  5.7.    PURGEFID
+
+  5.8.    REPLACE
+
+  6.      Initialization and cleanup
+
+  6.1.    Requirements
+  ______________________________________________________________________
+  0wpage
+
+  11..  IInnttrroodduuccttiioonn
+
+  A key component in the Coda Distributed File System is the cache
+  manager, _V_e_n_u_s.
+
+  When processes on a Coda enabled system access files in the Coda
+  filesystem, requests are directed at the filesystem layer in the
+  operating system. The operating system will communicate with Venus to
+  service the request for the process.  Venus manages a persistent
+  client cache and makes remote procedure calls to Coda file servers and
+  related servers (such as authentication servers) to service these
+  requests it receives from the operating system.  When Venus has
+  serviced a request it replies to the operating system with appropiate
+  return codes, and other data related to the request.  Optionally the
+  kernel support for Coda may maintain a minicache of recently processed
+  requests to limit the number of interactions with Venus.  Venus
+  possesses the facility to inform the kernel when elements from its
+  minicache are no longer valid.
+
+  This document describes precisely this communication between the
+  kernel and Venus.  The definitions of so called upcalls and downcalls
+  will be given with the format of the data they handle. We shall also
+  describe the semantic invariants resulting from the calls.
+
+  Historically Coda was implemented in a BSD file system in Mach 2.6.
+  The interface between the kernel and Venus is very similar to the BSD
+  VFS interface.  Similar functionality is provided, and the format of
+  the parameters and returned data is very similar to the BSD VFS.  This
+  leads to an almost natural environment for implementing a kernel level
+  filesystem driver for Coda in a BSD system.  However, other operating
+  systems such as Linux and Windows 95 and NT have virtual filesystem
+  with different interfaces.
+
+  To implement Coda on these systems some reverse engineering of the
+  Venus/Kernel protocol is necessary.  Also it came to light that other
+  systems could profit significantly from certain small optimizations
+  and modifications to the protocol. To facilitate this work as well as
+  to make future ports easier, communication between Venus and the
+  kernel should be documented in great detail.  This is the aim of this
+  document.
+
+  0wpage
+
+  22..  SSeerrvviicciinngg CCooddaa ffiilleessyysstteemm ccaallllss
+
+  The service of a request for a Coda file system service originates in
+  a process PP which accessing a Coda file. It makes a system call which
+  traps to the OS kernel. Examples of such calls trapping to the kernel
+  are _r_e_a_d_, _w_r_i_t_e_, _o_p_e_n_, _c_l_o_s_e_, _c_r_e_a_t_e_, _m_k_d_i_r_, _r_m_d_i_r_, _c_h_m_o_d in a Unix
+  context.  Similar calls exist in the Win32 environment, and are named
+  _C_r_e_a_t_e_F_i_l_e_, .
+
+  Generally the operating system handles the request in a virtual
+  filesystem (VFS) layer, which is named I/O Manager in NT and IFS
+  manager in Windows 95.  The VFS is responsible for partial processing
+  of the request and for locating the specific filesystem(s) which will
+  service parts of the request.  Usually the information in the path
+  assists in locating the correct FS drivers.  Sometimes after extensive
+  pre-processing, the VFS starts invoking exported routines in the FS
+  driver.  This is the point where the FS specific processing of the
+  request starts, and here the Coda specific kernel code comes into
+  play.
+
+  The FS layer for Coda must expose and implement several interfaces.
+  First and foremost the VFS must be able to make all necessary calls to
+  the Coda FS layer, so the Coda FS driver must expose the VFS interface
+  as applicable in the operating system. These differ very significantly
+  among operating systems, but share features such as facilities to
+  read/write and create and remove object.  The Coda FS layer services
+  such VFS requests in by invoking on or more well defined services
+  offered by the cache manager Venus.  When the replies from Venus have
+  come back to the FS driver, servicing of the VFS call continues and
+  finishes with a reply to the kernels VFS. Finally the VFS layer
+  returns to the process.
+
+  As a result of this design a basic interface exposed by the FS driver
+  must allow Venus to handle manage message traffic.  In particular
+  Venus must be able to retrieve and place messages and to be notified
+  of the arrival of a new message. The notification must be through a
+  mechanism which does not block Venus since Venus must attend to other
+  tasks even when no messages are waiting or being processed.
+
+                       Interfaces of Coda FS Driver
+
+  Furthermore the FS layer provides for a special path of communication
+  between a user process and Venus, called the pioctl interface. The
+  pioctl interface is used for Coda specific services, such as
+  requesting detailed information about the persistent cache managed by
+  Venus. Here the involvement of the kernel is minimal.  It identifies
+  the calling process and passes the information on to Venus.  When
+  Venus replies the response is passed back to the caller in unmodified
+  form.
+
+  Finally Venus allows the kernel FS driver to cache the results from
+  certain services.  This is done to avoid excessive context switches
+  and results in an efficient system.  However, Venus may acquire
+  information, for example from the network which implies that cached
+  information must be flushed or replaced. Venus then makes a downcall
+  to the Coda FS layer to request flushes or updates in the cache.  The
+  kernel FS driver handles such requests synchronously.
+
+  Among these interfaces the VFS interface and the facility to place,
+  receive and be notified of messages are platform specific.  We will
+  not go into the calls exported to the VFS layer but we will state the
+  requirements of the message exchange mechanism.
+
+  0wpage
+
+  33..  TThhee mmeessssaaggee llaayyeerr
+
+  At the lowest level the communication between Venus and the FS driver
+  proceeds through messages.  The synchronization of between processes
+  requesting Coda file service and Venus relies on blocking and waking
+  up processes.  The Coda FS driver processes VFS- and pioctl-requests
+  on behalf of a process P, creates messages for Venus, awaits replies
+  and finally returns to the caller.  The implementation of the exchange
+  of messages is platform specific, but the semantics have (so far)
+  appeared to be generally applicable.  Data buffers are created by the
+  FS Driver in kernel memory on behalf of P and copied to user memory in
+  Venus.
+
+  The FS Driver while servicing P makes upcall's to Venus.  Such an
+  upcall is dispatched to Venus by creating a message structure.  The
+  structure contains the identification of P, the message sequence
+  number, the size of the request and a pointer to the data in kernel
+  memory for the request.  Since the data buffer is re-used to hold the
+  reply from Venus, there is a field for the size of the reply.  A flags
+  field is used in the message to precisely record the status of the
+  message.  Additional platform dependent structures involve pointers to
+  determine the position of the message on queues and pointers to
+  synchronization objects.  In the upcall routine the message structure
+  is filled in, flags are set to 0, and it is placed on the _p_e_n_d_i_n_g
+  queue.  The routine calling upcall is responsible for allocating the
+  data buffer; it's structure will be described in the next section.
+
+  A facility must exist to notify Venus that the message has been
+  created, and implemented using available synchronization objects in
+  the OS. This notification is done in the upcall context of the process
+  P. When the message is on the pending queue, process P cannot proceed
+  in upcall.  The (kernel mode) processing of P in the filesystem
+  request routine must be suspended until Venus has replied.  Therefore
+  the calling thread in P is blocked in upcall.  A pointer in the
+  message structure will locate the synchronization object on which P is
+  sleeping.
+
+  Venus detects the notification that a message has arrived, and the FS
+  driver allow Venus to retrieve the message with a getmsg_from_kernel
+  call. This action finishes in the kernel by putting the message on the
+  queue of processing messages and setting flags to READ.  Venus is
+  passed the contents of the data buffer. The getmsg_from_kernel call
+  now returns and Venus processes the request.
+
+  At some later point the FS driver receives a message from Venus,
+  namely when Venus calls sendmsg_to_kernel.  At this moment the Coda FS
+  driver looks at the contents of the message and decides if:
+
+  +o  the message is a reply for a suspended thread P.  If so it removes
+     the message from the processing queue and marks the message as
+     WRITTEN.  Finally, the FS driver unblocks P (still in the kernel
+     mode context of Venus) and the sendmsg_to_kernel call returns to
+     Venus.  The process P will be scheduled at some point and continues
+     processing its upcall with the data buffer replaced with the reply
+     from Venus.
+
+  +o  The message is a _d_o_w_n_c_a_l_l.  A downcall is a request from Venus to
+     the FS Driver. The FS driver processes the request immediately
+     (usually a cach eviction or replacement) and when finishes
+     sendmsg_to_kernel returns.
+
+  Now P awakes and continues processing upcall.  There are some
+  subtleties to take account off. First P will determine if it was woken
+  up in upcall by a signal from some other source (for example an
+  attempt to terminate P) or as is normally the case by Venus in its
+  sendmsg_to_kernel call.  In the normal case, the upcall routine will
+  deallocate message structure and return.  The FS routine can proceed
+  with its processing.
+
+                      Sleeping and IPC arrangements
+
+  In case P is woken up by a signal and not by Venus, it will first look
+  at the flags field.  If the message is not yet READ, the process P can
+  handle it's signal without notifying Venus.  If Venus has READ, and
+  the request should not be processed, P can send Venus a signal message
+  to indicate that it should disregard the previous message.  Such
+  signals are put in the queue at the head, and read first by Venus.  If
+  the message is already marked as WRITTEN it is too late to stop the
+  processing.  The VFS routine will now continue.  (-- If a VFS request
+  involves more than one upcall, this can lead to complicated state, an
+  extra field "handle_signals" could be added in the message structure
+  to indicate points of no return have been passed.--)
+
+  33..11..  IImmpplleemmeennttaattiioonn ddeettaaiillss
+
+  The Unix implementation of this mechanism has been through the
+  implemenation of a character device associated with Coda.  Venus
+  retrieves messages by doing a read on the device, replies are sent
+  with a write and notification is through the select system call on the
+  file descriptor for the device.  The process P is kept waiting on an
+  interruptible wait queue object.
+
+  In Windows NT and the DPMI Windows 95 implementation a DeviceIoControl
+  call is used.  The DeviceIoControl call is designed to copy buffers
+  from user memory to kernel memory with OPCODES. The sendmsg_to_kernel
+  is issued as a synchronous call, while the getmsg_from_kernel call is
+  asynchrounous.  Windows EventObjects are used for notification of
+  message arrival.  The process P is kept waiting on a KernelEvent
+  object in NT and a semaphore in Windows 95.
+
+  0wpage
+
+  44..  TThhee iinntteerrffaaccee aatt tthhee ccaallll lleevveell
+
+  This section describes the upcalls a Coda FS driver can make to Venus.
+  Each of these upcalls make use of two structures: inputArgs and
+  outputArgs.   In pseudo BNF form the structures take the following
+  form:
+
+  struct inputArgs {
+      u_long opcode;
+      u_long unique;     /* Keep multiple outstanding msgs distinct */
+      u_short pid;                 /* Common to all */
+      u_short pgid;                /* Common to all */
+      struct CodaCred cred;        /* Common to all */
+
+      <union "in" of call dependent parts of inputArgs>
+  };
+
+  struct outputArgs {
+      u_long opcode;
+      u_long unique;       /* Keep multiple outstanding msgs distinct */
+      u_long result;
+
+      <union "out" of call dependent parts of inputArgs>
+  };
+
+  Before going on let us elucidate the role of the various fields. The
+  inputArgs start with the opcode which defines the type of service
+  requested from Venus. There are approximately 30 upcalls at present
+  which we will discuss.   The unique field labels the inputArg with
+  unique number which will identify the message uniquely.  A process and
+  process group id are passed.  Finally the credentials of the caller
+  are included.
+
+  Before delving into the specific calls we need to discuss a variety of
+  data structures shared by the kernel and Venus.
+
+  44..11..  DDaattaa ssttrruuccttuurreess sshhaarreedd bbyy tthhee kkeerrnneell aanndd VVeennuuss
+
+  The CodaCred structure defines a variety of user and group id's as
+  they are set for the calling process. The vuid_t and guid_t are 32 bit
+  unsigned integers.  It also defines group member ship in an array.  On
+  Unix the CodaCred has proven sufficient to implement good security
+  semantics for Coda but the structure may have to undergo modification
+  for the Windows environment when these mature.
+
+  struct CodaCred {
+      vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, efftve, set, fs uid*/
+      vgid_t cr_gid, cr_egid, cr_sgid, cr_fsgid; /* same for groups */
+      vgid_t cr_groups[NGROUPS];        /* Group membership for caller */
+  };
+
+  NNOOTTEE It is questionable if we need CodaCreds in Venus. Finally Venus
+  doesn't know about groups, although it does create files with the
+  default uid/gid.  Perhaps the list of group membership is superfluous.
+
+  The next item is the fundamental identifier used to identify Coda
+  files, the ViceFid.  A fid of a file uniquely defines a file or
+  directory in the Coda filesystem within a _c_e_l_l.   (-- A _c_e_l_l is a
+  group of Coda servers acting under the aegis of a single system
+  control machine or SCM. See the Coda Administration manual for a
+  detailed description of the role of the SCM.--)
+
+  typedef struct ViceFid {
+      VolumeId Volume;
+      VnodeId Vnode;
+      Unique_t Unique;
+  } ViceFid;
+
+  Each of the constituent fields: VolumeId, VnodeId and Unique_t are
+  unsigned 32 bit integers.  We envisage that a further field will need
+  to be prefixed to identify the Coda cell; this will probably take the
+  form of a Ipv6 size IP address naming the Coda cell through DNS.
+
+  The next important structure shared between Venus and the kernel are
+  the attributes of the file.  The following structure is used to
+  exchange information.  It has room for future extensions such as
+  support for device files (currently not present in Coda).
+
+  struct coda_vattr {
+          enum coda_vtype va_type;        /* vnode type (for create) */
+          u_short         va_mode;        /* files access mode and type */
+          short           va_nlink;       /* number of references to file */
+          vuid_t          va_uid;         /* owner user id */
+          vgid_t          va_gid;         /* owner group id */
+          long            va_fsid;        /* file system id (dev for now) */
+          long            va_fileid;      /* file id */
+          u_quad_t        va_size;        /* file size in bytes */
+          long            va_blocksize;   /* blocksize preferred for i/o */
+          struct timespec va_atime;       /* time of last access */
+          struct timespec va_mtime;       /* time of last modification */
+          struct timespec va_ctime;       /* time file changed */
+          u_long          va_gen;         /* generation number of file */
+          u_long          va_flags;       /* flags defined for file */
+          dev_t           va_rdev;        /* device special file represents */
+          u_quad_t        va_bytes;       /* bytes of disk space held by file */
+          u_quad_t        va_filerev;     /* file modification number */
+          u_int           va_vaflags;     /* operations flags, see below */
+          long            va_spare;       /* remain quad aligned */
+  };
+
+  44..22..  TThhee ppiiooccttll iinntteerrffaaccee
+
+  Coda specific requests can be made by application through a pioctl
+  interface. The pioctl is implemented as an ordinary ioctl on a
+  ficticious file /coda/.CONTROL.  The piocl call opens this file, gets
+  a file handle and makes the ioctl call. Finally it closes the file.
+
+  The kernel involvement in this is limited to providing the facility to
+  open and close and pass the ioctl message _a_n_d to verify that a path in
+  the pioctl data buffers is a file in a Coda filesystem.
+
+  The kernel is handed a data packet of the form:
+
+      struct {
+          const char *path;
+          struct ViceIoctl vidata;
+          int follow;
+      } data;
+
+  where
+
+  struct ViceIoctl {
+          caddr_t in, out;        /* Data to be transferred in, or out */
+          short in_size;          /* Size of input buffer <= 2K */
+          short out_size;         /* Maximum size of output buffer, <= 2K */
+  };
+
+  The path must be a Coda file, otherwise the ioctl upcall will not be
+  made.
+
+  NNOOTTEE  The data structures and code are a mess.  We need to clean this
+  up.
+
+  We now proceed to document the individual calls:
+
+  0wpage
+
+  44..33..  rroooott
+
+  AArrgguummeennttss
+
+     iinn empty
+
+     oouutt
+
+                struct cfs_root_out {
+                    ViceFid VFid;
+                } cfs_root;
+
+  DDeessccrriippttiioonn This call is made to Venus during the initialization of
+  the Coda filesystem. If the result is zero, the cfs_root structure
+  contains the ViceFid of the root of the Coda filesystem. If a non-zero
+  result is generated, its value is a platform dependent error code
+  indicating the difficulty Venus encountered in locating the root of
+  the Coda filesystem.
+
+  0wpage
+
+  44..44..  llooookkuupp
+
+  SSuummmmaarryy Find the ViceFid and type of an object in a directory if it
+  exists.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct  cfs_lookup_in {
+                    ViceFid     VFid;
+                    char        *name;          /* Place holder for data. */
+                } cfs_lookup;
+
+     oouutt
+
+                struct cfs_lookup_out {
+                    ViceFid VFid;
+                    int vtype;
+                } cfs_lookup;
+
+  DDeessccrriippttiioonn This call is made to determine the ViceFid and filetype of
+  a directory entry.  The directory entry requested carries name name
+  and Venus will search the directory identified by cfs_lookup_in.VFid.
+  The result may indicate that the name does not exist, or that
+  difficulty was encountered in finding it (e.g. due to disconnection).
+  If the result is zero, the field cfs_lookup_out.VFid contains the
+  targets ViceFid and cfs_lookup_out.vtype the coda_vtype giving the
+  type of object the name designates.
+
+  The name of the object is an 8 bit character string of maximum length
+  CFS_MAXNAMLEN, currently set to 256 (including a 0 terminator.)
+
+  It is extremely important to realize that Venus bitwise or's the field
+  cfs_lookup.vtype with CFS_NOCACHE to indicate that the object should
+  not be put in the kernel name cache.
+
+  NNOOTTEE The type of the vtype is currently wrong.  It should be
+  coda_vtype. Linux does not take note of CFS_NOCACHE.  It should.
+
+  0wpage
+
+  44..55..  ggeettaattttrr
+
+  SSuummmmaarryy Get the attributes of a file.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_getattr_in {
+                    ViceFid VFid;
+                    struct coda_vattr attr; /* XXXXX */
+                } cfs_getattr;
+
+     oouutt
+
+                struct cfs_getattr_out {
+                    struct coda_vattr attr;
+                } cfs_getattr;
+
+  DDeessccrriippttiioonn This call returns the attributes of the file identified by
+  fid.
+
+  EErrrroorrss Errors can occur if the object with fid does not exist, are
+  unaccessible or if the caller does not have permission to fetch
+  attributes.
+
+  NNoottee Many kernel FS drivers (Linux, NT and Windows 95 need to acquire
+  the attributes as well as the Fid for the instantiation of an internal
+  "inode" or "FileHandle".  A significant improvement in performance on
+  such systems could be made by combining the _l_o_o_k_u_p and _g_e_t_a_t_t_r calls
+  both at the Venus/kernel interaction level and at the RPC level.
+
+  The vattr structure included in the input arguments is superfluous and
+  should be removed.
+
+  0wpage
+
+  44..66..  sseettaattttrr
+
+  SSuummmmaarryy Set the attributes of a file.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_setattr_in {
+                    ViceFid VFid;
+                    struct coda_vattr attr;
+                } cfs_setattr;
+
+     oouutt
+        empty
+
+  DDeessccrriippttiioonn The structure attr is filled with attributes to be changed
+  in BSD style.  Attributes not to be changed are set to -1, apart from
+  vtype which is set to VNON. Other are set to the value to be assigned.
+  The only attributes which the FS driver may request to change are the
+  mode, ownner, groupid, atime, mtime and ctime.  The return value
+  indicates success or failure.
+
+  EErrrroorrss A variety of errors can occur.  The object may not exist, may
+  be inaccessible, or permission may not be granted by Venus.
+
+  0wpage
+
+  44..77..  aacccceessss
+
+  SSuummmmaarryy
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_access_in {
+                    ViceFid     VFid;
+                    int flags;
+                } cfs_access;
+
+     oouutt
+        empty
+
+  DDeessccrriippttiioonn Verify if access to the object identified by VFid for
+  operetions described by flags is permitted.  The result indicates if
+  access will be granted.  It is important to remember that Coda uses
+  ACL's to enforce protection and that ultimately the servers, not the
+  clients enforce the security of the system.  The result of this call
+  will depend on wether a _t_o_k_e_n is held by the user.
+
+  EErrrroorrss The object may not exist, or the ACL describing the protection
+  may not be accessible.
+
+  0wpage
+
+  44..88..  ccrreeaattee
+
+  SSuummmmaarryy Invoked to create a file
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_create_in {
+                    ViceFid VFid;
+                    struct coda_vattr attr;
+                    int excl;
+                    int mode;
+                    char        *name;          /* Place holder for data. */
+                } cfs_create;
+
+     oouutt
+
+                struct cfs_create_out {
+                    ViceFid VFid;
+                    struct coda_vattr attr;
+                } cfs_create;
+
+  DDeessccrriippttiioonn  This upcall is invoked to request creation of a file.
+  The file will be created in the directory identified by VFid, its name
+  will be name, and the mode will be mode.  If excl is set an error will
+  be returned if the file already exists.  If the size field in attr is
+  set to zero the file will be truncated.  The uid and gid of the file
+  are set by converting the CodaCred to a uid using a macro CRTOUID
+  (this macro is platform dependent).  Upon success the VFid and
+  attributes of the file are returned.  The Coda FS Driver will normally
+  instantiate a vnode, inode or filehandle at kernel level for the new
+  object.
+
+  EErrrroorrss A variety of errors can occur. Permissions may be insufficient.
+  If the object exists and is not a file the error EISDIR is returned
+  under Unix.
+
+  NNOOTTEE The packing of parameters is very inefficient and appears to
+  indicate confusion between the system call creat and the VFS operation
+  create. The VFS operation create is only called to create new objects.
+  This create call differs from the Unix one in that it is not invoked
+  to return a file descriptor. The trunctate and exclusive options,
+  together with the mode, could simply be part of the mode as it is
+  under Unix.  There should be no flags argument; this is used in open
+  (2) to return a filedescriptor for READ or WRITE mode.
+
+  The attributes of the directory should be returned too, since the size
+  and mtime changed.
+
+  0wpage
+
+  44..99..  mmkkddiirr
+
+  SSuummmmaarryy Create a new directory.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_mkdir_in {
+                    ViceFid     VFid;
+                    struct coda_vattr attr;
+                    char        *name;          /* Place holder for data. */
+                } cfs_mkdir;
+
+     oouutt
+
+                struct cfs_mkdir_out {
+                    ViceFid VFid;
+                    struct coda_vattr attr;
+                } cfs_mkdir;
+
+  DDeessccrriippttiioonn This call is similar to create but creates a directory.
+  Only the mode field in the input parameters is used for creation.
+  Upon successful creation, the attr returned contains the attributes of
+  the new directory.
+
+  EErrrroorrss As for create.
+
+  NNOOTTEE The input parameter should be changed to mode instead of
+  attributes.
+
+  The attributes of the parent should be returned since the size and
+  mtime changes.
+
+  0wpage
+
+  44..1100..  lliinnkk
+
+  SSuummmmaarryy Create a link to an existing file.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_link_in {
+                    ViceFid sourceFid;          /* cnode to link *to* */
+                    ViceFid destFid;            /* Directory in which to place link */
+                    char        *tname;         /* Place holder for data. */
+                } cfs_link;
+
+     oouutt
+        empty
+
+  DDeessccrriippttiioonn This call creates a link to the sourceFid in the directory
+  identified by destFid with name tname.  The source must reside in the
+  targets parent, i.e. the source must be have parent destFid, i.e. Coda
+  does not support cross directory hard links.  Only the return value is
+  relevant.  It indicates success or the type of failure.
+
+  EErrrroorrss The usual errors can occur.0wpage
+
+  44..1111..  ssyynnlliinnkk
+
+  SSuummmmaarryy create a symbolic link
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_symlink_in {
+                    ViceFid     VFid;          /* Directory to put symlink in */
+                    char        *srcname;
+                    struct coda_vattr attr;
+                    char        *tname;
+                } cfs_symlink;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn Create a symbolic link. The link is to be placed in the
+  directory identified by VFid and named tname.  It should point to the
+  pathname srcname.  The attributes of the newly creaeted object are to
+  be set to attr.
+
+  EErrrroorrss
+
+  NNOOTTEE The attributes of the target directory should be returned since
+  its size changed.
+
+  0wpage
+
+  44..1122..  rreemmoovvee
+
+  SSuummmmaarryy Remove a file
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_remove_in {
+                    ViceFid     VFid;
+                    char        *name;          /* Place holder for data. */
+                } cfs_remove;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn  Remove file named cfs_remove_in.name in directory
+  identified by   VFid.
+
+  EErrrroorrss
+
+  NNOOTTEE The attributes of the directory should be returned since its
+  mtime and size may change.
+
+  0wpage
+
+  44..1133..  rrmmddiirr
+
+  SSuummmmaarryy Remove a directory
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_rmdir_in {
+                    ViceFid     VFid;
+                    char        *name;          /* Place holder for data. */
+                } cfs_rmdir;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn Remove the directory with name name from the directory
+  identified by VFid.
+
+  EErrrroorrss
+
+  NNOOTTEE The attributes of the parent directory should be returned since
+  its mtime and size may change.
+
+  0wpage
+
+  44..1144..  rreeaaddlliinnkk
+
+  SSuummmmaarryy Read the value of a symbolic link.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_readlink_in {
+                    ViceFid VFid;
+                } cfs_readlink;
+
+     oouutt
+
+                struct cfs_readlink_out {
+                    int count;
+                    caddr_t     data;           /* Place holder for data. */
+                } cfs_readlink;
+
+  DDeessccrriippttiioonn This routine reads the contents of symbolic link
+  identified by VFid into the buffer data.  The buffer data must be able
+  to hold any name up to CFS_MAXNAMLEN (PATH or NAM??).
+
+  EErrrroorrss No unusual errors.
+
+  0wpage
+
+  44..1155..  ooppeenn
+
+  SSuummmmaarryy Open a file.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_open_in {
+                    ViceFid     VFid;
+                    int flags;
+                } cfs_open;
+
+     oouutt
+
+                struct cfs_open_out {
+                    dev_t       dev;
+                    ino_t       inode;
+                } cfs_open;
+
+  DDeessccrriippttiioonn  This request asks Venus to place the file identified by
+  VFid in its cache and to note that the calling process wishes to open
+  it with flags as in open(2).  The return value to the kernel differs
+  for Unix and Windows systems.  For Unix systems the Coda FS Driver is
+  informed of the device and inode number of the container file in the
+  fields dev and inode.  For Windows the path of the container file is
+  returned to the kernel.
+
+  EErrrroorrss
+
+  NNOOTTEE Currently the cfs_open_out structure is not properly adapted to
+  deal with the windows case.  It might be best to implement two
+  upcalls, one to open aiming at a container file name, the other at a
+  container file inode.
+
+  0wpage
+
+  44..1166..  cclloossee
+
+  SSuummmmaarryy Close a file, update it on the servers.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_close_in {
+                    ViceFid     VFid;
+                    int flags;
+                } cfs_close;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn Close the file identified by VFid.
+
+  EErrrroorrss
+
+  NNOOTTEE The flags argument is bogus and not used.  However, Venus' code
+  has room to deal with an execp input field, probably this field should
+  be used to inform Venus that the file was closed but is still memory
+  mapped for execution.  There are comments about fetching versus not
+  fetching the data in Venus vproc_vfscalls.  This seems silly.  If a
+  file is being closed, the data in the container file is to be the new
+  data.  Here again the execp flag might be in play to create confusion:
+  presently Venus might think a file can be flushed from the cache when
+  it is still memory mapped.  This needs to be understood.
+
+  0wpage
+
+  44..1177..  iiooccttll
+
+  SSuummmmaarryy Do an ioctl on a file. This includes the piocl interface.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_ioctl_in {
+                    ViceFid VFid;
+                    int cmd;
+                    int len;
+                    int rwflag;
+                    char *data;                 /* Place holder for data. */
+                } cfs_ioctl;
+
+     oouutt
+
+                struct cfs_ioctl_out {
+                    int len;
+                    caddr_t     data;           /* Place holder for data. */
+                } cfs_ioctl;
+
+  DDeessccrriippttiioonn Do an ioctl operation on a file.  The command, len and
+  data arguments are filled as usual.  flags is not used by Venus.
+
+  EErrrroorrss
+
+  NNOOTTEE Another bogus parameter.  flags is not used.  What is the
+  business about PREFETCHING in the Venus' code?
+
+  0wpage
+
+  44..1188..  rreennaammee
+
+  SSuummmmaarryy Rename a fid.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_rename_in {
+                    ViceFid     sourceFid;
+                    char        *srcname;
+                    ViceFid destFid;
+                    char        *destname;
+                } cfs_rename;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn  Rename the object with name srcname in directory
+  sourceFid to destname in destFid.   It is important that the names
+  srcname and destname are 0 terminated strings.  Strings in Unix
+  kernels are not always null terminated.
+
+  EErrrroorrss
+
+  0wpage
+
+  44..1199..  rreeaaddddiirr
+
+  SSuummmmaarryy Read directory entries.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_readdir_in {
+                    ViceFid     VFid;
+                    int count;
+                    int offset;
+                } cfs_readdir;
+
+     oouutt
+
+                struct cfs_readdir_out {
+                    int size;
+                    caddr_t     data;           /* Place holder for data. */
+                } cfs_readdir;
+
+  DDeessccrriippttiioonn Read directory entries from VFid starting at offset and
+  read at most count bytes.  Returns the data into data and indicates
+  the size returned size.
+
+  EErrrroorrss
+
+  NNOOTTEE This call is not used.  Readdir operations exploit container
+  files.  We will re-evaluate this during the directory revamp which is
+  about to take place.
+
+  0wpage
+
+  44..2200..  vvggeett
+
+  SSuummmmaarryy instructs Venus to do an FSDB->Get.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_fsync_in {
+                    ViceFid VFid;
+                } cfs_fsync;
+
+     oouutt
+
+                struct cfs_vget_out {
+                    ViceFid VFid;
+                    int vtype;
+                } cfs_vget;
+
+  DDeessccrriippttiioonn This upcall asks Venus to do a get operation on an fsobj
+  labelled by VFid.
+
+  EErrrroorrss
+
+  NNOOTTEE This operation is not used.  However, it is extremely useful
+  since it can be used to deal with read/write memory mapped files.
+  These can be "pinned" in the Venus cache using vget and release with
+  inactive.
+
+  0wpage
+
+  44..2211..  ffssyynncc
+
+  SSuummmmaarryy Tell Venus to update the RVM attributes of a file.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_fsync_in {
+                    ViceFid VFid;
+                } cfs_fsync;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn  Ask Venus to update RVM attributes of object VFid. This
+  should be called as  part of kernel level fsync type calls.  The
+  result indicates if the synching was successful.
+
+  EErrrroorrss
+
+  NNOOTTEE Linux does not implement this call. It should.
+
+  0wpage
+
+  44..2222..  iinnaaccttiivvee
+
+  SSuummmmaarryy Tell Venus a vnode is no longer in use.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_inactive_in {
+                    ViceFid VFid;
+                } cfs_inactive;
+
+     oouutt
+        none
+
+  DDeessccrriippttiioonn This operation returns EOPNOTSUPP.
+
+  EErrrroorrss
+
+  NNOOTTEE This should perhaps be removed.
+
+  0wpage
+
+  44..2233..  rrddwwrr
+
+  SSuummmmaarryy Read or write from a file
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct cfs_rdwr_in {
+                    ViceFid     VFid;
+                    int rwflag;
+                    int count;
+                    int offset;
+                    int ioflag;
+                    caddr_t     data;           /* Place holder for data. */
+                } cfs_rdwr;
+
+     oouutt
+
+                struct cfs_rdwr_out {
+                    int rwflag;
+                    int count;
+                    caddr_t     data;   /* Place holder for data. */
+                } cfs_rdwr;
+
+  DDeessccrriippttiioonn This upcall asks Venus to read or write from a file.
+
+  EErrrroorrss
+
+  NNOOTTEE It should be removed since it is against the Coda philosophy that
+  read/write operations never reach Venus.  I have been told the
+  operation does not work.  It is not currently used.
+
+  0wpage
+
+  44..2244..  ooddyymmoouunntt
+
+  SSuummmmaarryy Allows mounting multiple Coda "filesystems" on one Unix mount
+  point.
+
+  AArrgguummeennttss
+
+     iinn
+
+                struct ody_mount_in {
+                    char        *name;          /* Place holder for data. */
+                } ody_mount;
+
+     oouutt
+
+                struct ody_mount_out {
+                    ViceFid VFid;
+                } ody_mount;
+
+  DDeessccrriippttiioonn  Asks Venus to return the rootfid of a Coda system named
+  name.  The fid is returned in VFid.
+
+  EErrrroorrss
+
+  NNOOTTEE This call was used by David for dynamic sets.  It should be
+  removed since it causes a jungle of pointers in the VFS mounting area.
+  It is not used by Coda proper.  Call is not implemented by Venus.
+
+  0wpage
+
+  44..2255..  ooddyy__llooookkuupp
+
+  SSuummmmaarryy Looks up something.
+
+  AArrgguummeennttss
+
+     iinn irrelevant
+
+     oouutt
+        irrelevant
+
+  DDeessccrriippttiioonn
+
+  EErrrroorrss
+
+  NNOOTTEE Gut it. Call is not implemented by Venus.
+
+  0wpage
+
+  44..2266..  ooddyy__eexxppaanndd
+
+  SSuummmmaarryy expands something in a dynamic set.
+
+  AArrgguummeennttss
+
+     iinn irrelevant
+
+     oouutt
+        irrelevant
+
+  DDeessccrriippttiioonn
+
+  EErrrroorrss
+
+  NNOOTTEE Gut it.  Call is not implemented by Venus.
+
+  0wpage
+
+  44..2277..  pprreeffeettcchh
+
+  SSuummmmaarryy Prefetch a dynamic set.
+
+  AArrgguummeennttss
+
+     iinn Not documented.
+
+     oouutt
+        Not documented.
+
+  DDeessccrriippttiioonn  Venus worker.cc has support for this call, although it is
+  noted that it doesn't work.  Not surprising, since the kernel does not
+  have support for it. (ODY_PREFETCH is not a defined operation).
+
+  EErrrroorrss
+
+  NNOOTTEE Gut it. It isn't working and isn't used by Coda.
+
+  0wpage
+
+  44..2288..  ssiiggnnaall
+
+  SSuummmmaarryy Send Venus a signal about an upcall.
+
+  AArrgguummeennttss
+
+     iinn none
+
+     oouutt
+        not applicable.
+
+  DDeessccrriippttiioonn  This is an out-of-band upcall to Venus to inform Venus
+  that the calling process received a signal after Venus read the
+  message from the input queue.  Venus is supposed to clean up the
+  operation.
+
+  EErrrroorrss No reply is given.
+
+  NNOOTTEE We need to better understand what Venus needs to clean up and if
+  it is doing this correctly.  Also we need to handle multiple upcall
+  per system call situations correctly.  It would be important to know
+  what state changes in Venus take place after an upcall for which the
+  kernel is responsible for notifying Venus to clean up (e.g. open
+  definitely is such a state change, but many others are maybe not).
+
+  0wpage
+
+  55..  TThhee mmiinniiccaacchhee aanndd ddoowwnnccaallllss
+
+  The Coda FS Driver can cache results of lookup and access upcalls, to
+  limit the frequency of upcalls.  Upcalls carry a price since a process
+  context switch needs to take place.  The counterpart of caching the
+  information is that Venus will notify the FS Driver that cached
+  entries must be flushed or renamed.
+
+  The kernel code generally has to maintain a structure which links the
+  internal file handles (called vnodes in BSD, inodes in Linux and
+  FileHandles in Windows) with the ViceFid's which Venus maintains.
+  Ther reason is that frequent translations back and forth are needed in
+  order to make upcalls and use the results of upcalls.  Such linking
+  objects are called ccnnooddeess.
+
+  The current minicache implementations have cache entries which record
+  the following:
+
+  1. the name of the file
+
+  2. the cnode of the directory containing the object
+
+  3. a list of CodaCred's for which the lookup is permitted.
+
+  4. the cnode of the object
+
+  The lookup call in the Coda FS Driver may request the cnode of the
+  desired object from the cache, by passing it's name, directory and the
+  CodaCred's of the caller.  The cache will return the cnode or indicate
+  and it cannot be found.  The Coda FS Driver must be careful to
+  invalidate cache entries when it modifies or removes objects.
+
+  When Venus obtains information that indicates that cache entries are
+  no longer valid, it will make a downcall to the kernel.  Downcalls are
+  intercepted by the Coda FS Driver and lead to cache invalidations of
+  the kind described below.  The Coda FS Driver does not return an error
+  unless the downcall data could not be read into kernel memory.
+
+  55..11..  IINNVVAALLIIDDAATTEE
+
+  No information is available on this call.
+
+  55..22..  FFLLUUSSHH
+
+  AArrgguummeennttss None
+
+  SSuummmmaarryy Flush the name cache entirely.
+
+  DDeessccrriippttiioonn Venus issues this call upon startup and when it dies. This
+  is to prevent stale cache information being held.  Some operating
+  systems allow the kernel name cache to be switched off dynamically.
+  When this is done, this downcall is made.
+
+  55..33..  PPUURRGGEEUUSSEERR
+
+  AArrgguummeennttss
+
+          struct cfs_purgeuser_out {/* CFS_PURGEUSER is a venus->kernel call */
+              struct CodaCred cred;
+          } cfs_purgeuser;
+
+  DDeessccrriippttiioonn Remove all entries in the cache carrying the Cred.  This
+  call is issued when tokes for a user expire or are flushed.
+
+  55..44..  ZZAAPPFFIILLEE
+
+  AArrgguummeennttss
+
+          struct cfs_zapfile_out {  /* CFS_ZAPFILE is a venus->kernel call */
+              ViceFid CodaFid;
+          } cfs_zapfile;
+
+  DDeessccrriippttiioonn Remove all entries which have the (dir vnode, name) pair.
+  This is issued as a result of an invalidation of cached attributes of
+  a vnode.
+
+  NNOOTTEE Call is not named correctly in NetBSD and Mach.  The minicache
+  zapfile routine takes different arguments. Linux does not implement
+  the invalidation of attributes correctly.
+
+  55..55..  ZZAAPPDDIIRR
+
+  AArrgguummeennttss
+
+          struct cfs_zapdir_out {   /* CFS_ZAPDIR is a venus->kernel call */
+              ViceFid CodaFid;
+          } cfs_zapdir;
+
+  DDeessccrriippttiioonn Remove all entries in the cache lying in a directory
+  CodaFid, and all children of this directory. This call is issed when
+  Venus receives a callback on the this directory.
+
+  55..66..  ZZAAPPVVNNOODDEE
+
+  AArrgguummeennttss
+
+          struct cfs_zapvnode_out { /* CFS_ZAPVNODE is a venus->kernel call */
+              struct CodaCred cred;
+              ViceFid VFid;
+          } cfs_zapvnode;
+
+  DDeessccrriippttiioonn Remove all entries in the cache carrying the cred and VFid
+  as in the arguments. This downcall is probably never issued.
+
+  55..77..  PPUURRGGEEFFIIDD
+
+  SSuummmmaarryy
+
+  AArrgguummeennttss
+
+          struct cfs_purgefid_out { /* CFS_PURGEFID is a venus->kernel call */
+              ViceFid CodaFid;
+          } cfs_purgefid;
+
+  DDeessccrriippttiioonn Flush the attribute for the file. If it is a dir (odd
+  vnode), purge its children from the namecache remove the file from the
+  namecache.
+
+  55..88..  RREEPPLLAACCEE
+
+  SSuummmmaarryy Replace the Fid's for a collection of names.
+
+  AArrgguummeennttss
+
+          struct cfs_replace_out { /* cfs_replace is a venus->kernel call */
+              ViceFid NewFid;
+              ViceFid OldFid;
+          } cfs_replace;
+
+  DDeessccrriippttiioonn This routine replaces a ViceFid in the name cache with
+  another.  It is added to allow Venus during reintegration to replace
+  locally allocated temp fids while disconnected with global fids even
+  when the reference count on those fids are not zero.
+
+  0wpage
+
+  66..  IInniittiiaalliizzaattiioonn aanndd cclleeaannuupp
+
+  This section gives brief hints as to desirable features for the Coda
+  FS Driver at startup and upon shutdown or Venus failures.  Before
+  entering the discussion it is useful to repeat that the Coda FS Driver
+  maintains the following data:
+
+  1. message queues
+
+  2. cnodes
+
+  3. name cache entries
+
+     The name cache entries are entirely private to the driver, so they
+     can easily be manipulated.   The message queues will generally have
+     clear points of initialization and destruction.  The cnodes are
+     much more delicate.  User processes hold reference counts in Coda
+     filesystems and it can be difficult to clean up the cnodes.
+
+  It can expect requests through:
+
+  1. the message subsystem
+
+  2. the VFS layer
+
+  3. pioctl interface
+
+     Currently the _p_i_o_c_t_l passes through the VFS for Coda so we can
+     treat these similarly.
+
+  66..11..  RReeqquuiirreemmeennttss
+
+  The following requirements should be accomodated:
+
+  1. The message queueus should have open and close routines.  On Unix
+     the opening of the character devices are such routines.
+
+  +o  Before opening, no messages can be placed.
+
+  +o  Opening will remove any old messages still pending.
+
+  +o  Close will notify any sleeping processes that their upcall cannot
+     be completed.
+
+  +o  Close will free all memory allocated by the message queues.
+
+  2. At open the namecache shall be initialized to empty state.
+
+  3. Before the message queues are open, all VFS operations will fail.
+     Fortunately this can be achieved by making sure than mounting the
+     Coda filesystem cannot succeed before opening.
+
+  4. After closing of the queues, no VFS operations can succeed.  Here
+     one needs to be careful, since a few operations (lookup,
+     read/write, readdir) can proceed without upcalls.  These must be
+     explicitly blocked.
+
+  5. Upon closing the namecache shall be flushed and disabled.
+
+  6. All memory held by cnodes can be freed without relying on upcalls.
+
+  7. Unmounting the file system can be done without relying on upcalss.
+
+  8. Mounting the Coda filesystem should fail gracefully if Venus cannot
+     get the rootfid or the attributes of the rootfid.  The latter is
+     best implemented by Venus fetching these objects before attempting
+     to mount.
+
+  NNOOTTEE  NetBSD in particular but also Linux have not implemented the
+  above requirements fully.  For smooth operation this needs to be
+  corrected.
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov