patch-2.1.72 linux/include/linux/byteorder_generic.h

Next file: linux/include/linux/byteorder_little_endian.h
Previous file: linux/include/linux/byteorder_big_endian.h
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.1.71/linux/include/linux/byteorder_generic.h linux/include/linux/byteorder_generic.h
@@ -1,298 +0,0 @@
-#ifndef _LINUX_BYTEORDER_GENERIC_H
-#define _LINUX_BYTEORDER_GENERIC_H
-
-/*
- * linux/byteorder_generic.h
- * Generic Byteswap support
- *
- * Francois-Rene Rideau <rideau@ens.fr> 19970707
- *    gathered all the good ideas from all asm-foo/byteorder.h into one file,
- *    cleaned them up.
- *    I hope it is compliant with non-GCC compilers.
- *    I decided to put __BYTEORDER_HAS_U64__ in byteorder.h,
- *    because I wasn't sure it would be ok to put it in types.h
- *    Upgraded it to 2.1.43
- * Francois-Rene Rideau <rideau@ens.fr> 19971012
- *    Upgraded it to 2.1.57
- *    to please Linus T., replaced huge #ifdef's between little/big endian
- *    by nestedly #include'd files.
- *
- * TODO:
- *   = Regular kernel maintainers could also replace all these manual
- *    byteswap macros that remain, disseminated among drivers,
- *    after some grep or the sources...
- *   = Linus might want to rename all these macros and files to fit his taste,
- *    to fit his personal naming scheme.
- *   = it seems that many drivers would also appreciate
- *    nybble swapping support...
- *   = every architecture could add their byteswap macro in asm/byteorder.h
- *    see how some architectures already do (i386, alpha, ppc, etc)
- */
-
-/*
- * This file is included by both <linux/byteorder_little_endian.h> and
- * <linux/byteorder_big_endian.h>. People porting from machines with
- * bizarre bytedisorder (like the VAX?) will have to write a different one.
- * Actually, this file mostly does byteswapping, and could be named
- * <byteswap.h> or <swab.h> rather than <linux/byteorder_generic.h>
- *
- */
-
-/*
- * The following macros are to be defined by <asm/byteorder.h>:
- *
- * Conversion of long and short int between network and host format
- *	ntohl(__u32 x)
- *	ntohs(__u16 x)
- *	htonl(__u32 x)
- *	htons(__u16 x)
- * It seems that some programs (which? where? or perhaps a standard? POSIX?)
- * might like the above to be functions, not macros (why?).
- * if that's true, then detect them, and take measures.
- * Anyway, the measure is: define only ___ntohl as a macro instead,
- * and in a separate file, have
- * unsigned long inline ntohl(x){return ___ntohl(x);}
- *
- * The same for constant arguments
- *	__constant_ntohl(__u32 x)
- *	__constant_ntohs(__u16 x)
- *	__constant_htonl(__u32 x)
- *	__constant_htons(__u16 x)
- *
- * Conversion of XX-bit integers (16- 32- or 64-)
- * between native cpu format and little/big endian format
- * 64-bit stuff only defined for proper architectures
- *	cpu_to_[bl]eXX(__uXX x)
- *	[bl]eXX_to_cpu(__uXX x)
- *
- * The same, but takes a pointer to the value to convert
- *	cpu_to_[bl]eXXp(__uXX x)
- *	[bl]eXX_to_cpup(__uXX x)
- *
- * The same, but change in situ
- *	cpu_to_[bl]eXXs(__uXX x)
- *	[bl]eXX_to_cpus(__uXX x)
- *
- * Byteswapping, independently from cpu endianness
- *	swabXX[ps]?(foo)
- *
- *
- * See asm-foo/byteorder.h for examples of how to provide
- * architecture-optimized versions
- *
- */
-
-#include <asm/types.h>
-
-/*
- * Generic byte swapping routines. We fall back on
- * these if we don't have any optimized code, and
- * when we have constants that we want the compiler
- * to byte swap for us..
- */
-#define ___swab16(x) \
-	((__u16)( \
-		(((__u16)(x) & 0x00ffU) << 8) | \
-		(((__u16)(x) & 0xff00U) >> 8) ))
-#define ___swab32(x) \
-	((__u32)( \
-		(((__u32)(x) & (__u32)0x000000ffUL) << 24) | \
-		(((__u32)(x) & (__u32)0x0000ff00UL) <<  8) | \
-		(((__u32)(x) & (__u32)0x00ff0000UL) >>  8) | \
-		(((__u32)(x) & (__u32)0xff000000UL) >> 24) ))
-#define ___swab64(x) \
-	((__u64)( \
-		(__u64)(((__u64)(x) & (__u64)0x00000000000000ffULL) << 56) | \
-		(__u64)(((__u64)(x) & (__u64)0x000000000000ff00ULL) << 40) | \
-		(__u64)(((__u64)(x) & (__u64)0x0000000000ff0000ULL) << 24) | \
-		(__u64)(((__u64)(x) & (__u64)0x00000000ff000000ULL) <<  8) | \
-	        (__u64)(((__u64)(x) & (__u64)0x000000ff00000000ULL) >>  8) | \
-		(__u64)(((__u64)(x) & (__u64)0x0000ff0000000000ULL) >> 24) | \
-		(__u64)(((__u64)(x) & (__u64)0x00ff000000000000ULL) >> 40) | \
-		(__u64)(((__u64)(x) & (__u64)0xff00000000000000ULL) >> 56) ))
-
-/*
- * These do constant folding - this allows the
- * compiler to do any constants at compile
- * time.  Any architecture inline asm optimizations
- * would be pessimizations.
- */
-#define __swab16(x) \
-	(__builtin_constant_p((__u16)(x)) ? \
-	 ___swab16((x)) : __fswab16((x)))
-#define __swab32(x) \
-	(__builtin_constant_p((__u32)(x)) ? \
-	 ___swab32((x)) : __fswab32((x)))
-#define __swab64(x) \
-	(__builtin_constant_p((__u64)(x)) ? \
-	 ___swab64((x)) : __fswab64((x)))
-
-
-/*
- * provide defaults when no architecture-specific optimization is detected
- */
-#ifndef __arch__swab16
-#  define __arch__swab16(x) ___swab16(x)
-#endif
-#ifndef __arch__swab32
-#  define __arch__swab32(x) ___swab32(x)
-#endif
-#ifndef __arch__swab64
-#  define __arch__swab64(x) ___swab64(x)
-#endif
-
-#ifndef __arch__swab16p
-#  define __arch__swab16p(x) __swab16(*(x))
-#endif
-#ifndef __arch__swab32p
-#  define __arch__swab32p(x) __swab32(*(x))
-#endif
-#ifndef __arch__swab64p
-#  define __arch__swab64p(x) __swab64(*(x))
-#endif
-
-#ifndef __arch__swab16s
-#  define __arch__swab16s(x) *(x) = __swab16p((x))
-#endif
-#ifndef __arch__swab32s
-#  define __arch__swab32s(x) *(x) = __swab32p((x))
-#endif
-#ifndef __arch__swab64s
-#  define __arch__swab64s(x) *(x) = __swab64p((x))
-#endif
-
-
-extern __inline__ __const__ __u16 __fswab16(__u16 x)
-{
-	return __arch__swab16(x);
-}
-extern __inline__ __u16 __swab16p(__u16 *x)
-{
-	return __arch__swab16p(x);
-}
-extern __inline__ void __swab16s(__u16 *addr)
-{
-	__arch__swab16s(addr);
-}
-
-extern __inline__ __const__ __u32 __fswab32(__u32 x)
-{
-	return __arch__swab32(x);
-}
-extern __inline__ __u32 __swab32p(__u32 *x)
-{
-	return __arch__swab32p(x);
-}
-extern __inline__ void __swab32s(__u32 *addr)
-{
-	__arch__swab32s(addr);
-}
-
-#ifdef __BYTEORDER_HAS_U64__
-extern __inline__ __const__ __u64 __fswab64(__u64 x)
-{
-#  ifdef __SWAB_64_THRU_32__
-	__u32 h = x >> 32;
-        __u32 l = x & ((1ULL<<32)-1);
-        return (((__u64)__swab32(l)) << 32) | ((__u64)(__swab32(h)));
-#  else
-	return __arch__swab64(x);
-#  endif
-}
-extern __inline__ __u64 __swab64p(__u64 *x)
-{
-	return __arch__swab64p(x);
-}
-extern __inline__ void __swab64s(__u64 *addr)
-{
-	__arch__swab64s(addr);
-}
-#endif /* __BYTEORDER_HAS_U64__ */
-
-#if defined(__KERNEL__) || defined(__REQUIRE_CPU_TO_XX)
-#define swab16 __swab16
-#define swab32 __swab32
-#define swab64 __swab64
-#define swab16p __swab16p
-#define swab32p __swab32p
-#define swab64p __swab64p
-#define swab16s __swab16s
-#define swab32s __swab32s
-#define swab64s __swab64s
-#define cpu_to_le64 __cpu_to_le64
-#define le64_to_cpu __le64_to_cpu
-#define cpu_to_le32 __cpu_to_le32
-#define le32_to_cpu __le32_to_cpu
-#define cpu_to_le16 __cpu_to_le16
-#define le16_to_cpu __le16_to_cpu
-#define cpu_to_be64 __cpu_to_be64
-#define be64_to_cpu __be64_to_cpu
-#define cpu_to_be32 __cpu_to_be32
-#define be32_to_cpu __be32_to_cpu
-#define cpu_to_be16 __cpu_to_be16
-#define be16_to_cpu __be16_to_cpu
-#define cpu_to_le64p __cpu_to_le64p
-#define le64_to_cpup __le64_to_cpup
-#define cpu_to_le32p __cpu_to_le32p
-#define le32_to_cpup __le32_to_cpup
-#define cpu_to_le16p __cpu_to_le16p
-#define le16_to_cpup __le16_to_cpup
-#define cpu_to_be64p __cpu_to_be64p
-#define be64_to_cpup __be64_to_cpup
-#define cpu_to_be32p __cpu_to_be32p
-#define be32_to_cpup __be32_to_cpup
-#define cpu_to_be16p __cpu_to_be16p
-#define be16_to_cpup __be16_to_cpup
-#define cpu_to_le64s __cpu_to_le64s
-#define le64_to_cpus __le64_to_cpus
-#define cpu_to_le32s __cpu_to_le32s
-#define le32_to_cpus __le32_to_cpus
-#define cpu_to_le16s __cpu_to_le16s
-#define le16_to_cpus __le16_to_cpus
-#define cpu_to_be64s __cpu_to_be64s
-#define be64_to_cpus __be64_to_cpus
-#define cpu_to_be32s __cpu_to_be32s
-#define be32_to_cpus __be32_to_cpus
-#define cpu_to_be16s __cpu_to_be16s
-#define be16_to_cpus __be16_to_cpus
-#endif
-
-/*
- * Handle ntohl and suches. These have various compatibility
- * issues - like we want to give the prototype even though we
- * also have a macro for them in case some strange program
- * wants to take the address of the thing or something..
- *
- * Note that these traditionally return a "long", even though
- * long is often 64-bit these days.. Thus the casts.
- *
- * They have to be macros in order to do the constant folding
- * correctly - if the argument passed into a inline function
- * it is no longer constant according to gcc..
- */
-
-#undef ntohl
-#undef ntohs
-#undef htonl
-#undef htons
-
-/*
- * Do the prototypes. Somebody might want to take the
- * address or some such sick thing..
- */
-extern unsigned long int	ntohl(unsigned long int);
-extern unsigned short int	ntohs(unsigned short int);
-extern unsigned long int	htonl(unsigned long int);
-extern unsigned short int	htons(unsigned short int);
-
-#define ___htonl(x) __cpu_to_be32(x)
-#define ___htons(x) __cpu_to_be16(x)
-#define ___ntohl(x) __be32_to_cpu(x)
-#define ___ntohs(x) __be16_to_cpu(x)
-
-#define htonl(x) ((unsigned long)___htonl(x))
-#define htons(x) ___htons(x)
-#define ntohl(x) ((unsigned long)___ntohl(x))
-#define ntohs(x) ___ntohs(x)
-
-#endif /* _LINUX_BYTEORDER_H */

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov