patch-2.1.73 linux/drivers/net/hamradio/dmascc.c

Next file: linux/drivers/net/ipddp.c
Previous file: linux/drivers/net/hamradio/Config.in
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.1.72/linux/drivers/net/hamradio/dmascc.c linux/drivers/net/hamradio/dmascc.c
@@ -0,0 +1,1260 @@
+/*
+ * $Id: dmascc.c,v 1.2 1997/12/02 16:49:49 oe1kib Exp $
+ *
+ * Driver for high-speed SCC boards (those with DMA support)
+ * Copyright (C) 1997 Klaus Kudielka
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+
+#include <linux/module.h>
+#include <linux/dmascc.h>
+#include <linux/errno.h>
+#include <linux/if_arp.h>
+#include <linux/in.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/netdevice.h>
+#include <linux/sockios.h>
+#include <linux/tqueue.h>
+#include <linux/version.h>
+#include <asm/atomic.h>
+#include <asm/bitops.h>
+#include <asm/dma.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/segment.h>
+#include <asm/uaccess.h>
+#include <net/ax25.h>
+#include <stdio.h>
+#include "z8530.h"
+
+
+/* Number of buffers per channel */
+
+#define NUM_TX_BUF      2          /* NUM_TX_BUF >= 1 (2 recommended) */
+#define NUM_RX_BUF      2          /* NUM_RX_BUF >= 1 (2 recommended) */
+#define BUF_SIZE        2016
+
+
+/* Cards supported */
+
+#define HW_PI           { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
+                            0, 8, 1843200, 3686400 }
+#define HW_PI2          { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
+			    0, 8, 3686400, 7372800 }
+#define HW_TWIN         { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
+			    0, 4, 6144000, 6144000 }
+
+#define HARDWARE        { HW_PI, HW_PI2, HW_TWIN }
+
+#define TYPE_PI         0
+#define TYPE_PI2        1
+#define TYPE_TWIN       2
+#define NUM_TYPES       3
+
+#define MAX_NUM_DEVS    32
+
+
+/* SCC chips supported */
+
+#define Z8530           0
+#define Z85C30          1
+#define Z85230          2
+
+#define CHIPNAMES       { "Z8530", "Z85C30", "Z85230" }
+
+
+/* I/O registers */
+
+/* 8530 registers relative to card base */
+#define SCCB_CMD        0x00
+#define SCCB_DATA       0x01
+#define SCCA_CMD        0x02
+#define SCCA_DATA       0x03
+
+/* 8254 registers relative to card base */
+#define TMR_CNT0        0x00
+#define TMR_CNT1        0x01
+#define TMR_CNT2        0x02
+#define TMR_CTRL        0x03
+
+/* Additional PI/PI2 registers relative to card base */
+#define PI_DREQ_MASK    0x04
+
+/* Additional PackeTwin registers relative to card base */
+#define TWIN_INT_REG    0x08
+#define TWIN_CLR_TMR1   0x09
+#define TWIN_CLR_TMR2   0x0a
+#define TWIN_SPARE_1    0x0b
+#define TWIN_DMA_CFG    0x08
+#define TWIN_SERIAL_CFG 0x09
+#define TWIN_DMA_CLR_FF 0x0a
+#define TWIN_SPARE_2    0x0b
+
+
+/* PackeTwin I/O register values */
+
+/* INT_REG */
+#define TWIN_SCC_MSK       0x01
+#define TWIN_TMR1_MSK      0x02
+#define TWIN_TMR2_MSK      0x04
+#define TWIN_INT_MSK       0x07
+
+/* SERIAL_CFG */
+#define TWIN_DTRA_ON       0x01
+#define TWIN_DTRB_ON       0x02
+#define TWIN_EXTCLKA       0x04
+#define TWIN_EXTCLKB       0x08
+#define TWIN_LOOPA_ON      0x10
+#define TWIN_LOOPB_ON      0x20
+#define TWIN_EI            0x80
+
+/* DMA_CFG */
+#define TWIN_DMA_HDX_T1    0x08
+#define TWIN_DMA_HDX_R1    0x0a
+#define TWIN_DMA_HDX_T3    0x14
+#define TWIN_DMA_HDX_R3    0x16
+#define TWIN_DMA_FDX_T3R1  0x1b
+#define TWIN_DMA_FDX_T1R3  0x1d
+
+
+/* Status values */
+
+/* tx_state */
+#define TX_IDLE    0
+#define TX_OFF     1
+#define TX_TXDELAY 2
+#define TX_ACTIVE  3
+#define TX_SQDELAY 4
+
+
+/* Data types */
+
+struct scc_hardware {
+  char *name;
+  int io_region;
+  int io_delta;
+  int io_size;
+  int num_devs;
+  int scc_offset;
+  int tmr_offset;
+  int tmr_hz;
+  int pclk_hz;
+};
+
+struct scc_priv {
+  char name[10];
+  struct enet_statistics stats;
+  struct scc_info *info;
+  int channel;
+  int cmd, data, tmr;
+  struct scc_param param;
+  char rx_buf[NUM_RX_BUF][BUF_SIZE];
+  int rx_len[NUM_RX_BUF];
+  int rx_ptr;
+  struct tq_struct rx_task;
+  int rx_head, rx_tail, rx_count;
+  int rx_over;
+  char tx_buf[NUM_TX_BUF][BUF_SIZE];
+  int tx_len[NUM_TX_BUF];
+  int tx_ptr;
+  int tx_head, tx_tail, tx_count;
+  int tx_sem, tx_state;
+  unsigned long tx_start;
+  int status;
+};
+
+struct scc_info {
+  int type;
+  int chip;
+  int open;
+  int scc_base;
+  int tmr_base;
+  int twin_serial_cfg;
+  struct device dev[2];
+  struct scc_priv priv[2];
+  struct scc_info *next;
+};
+
+
+/* Function declarations */
+
+int dmascc_init(void) __init;
+static int setup_adapter(int io, int h, int n) __init;
+
+static inline void write_scc(int ctl, int reg, int val);
+static inline int read_scc(int ctl, int reg);
+static int scc_open(struct device *dev);
+static int scc_close(struct device *dev);
+static int scc_ioctl(struct device *dev, struct ifreq *ifr, int cmd);
+static int scc_send_packet(struct sk_buff *skb, struct device *dev);
+static struct enet_statistics *scc_get_stats(struct device *dev);
+static int scc_set_mac_address(struct device *dev, void *sa);
+static void scc_isr(int irq, void *dev_id, struct pt_regs * regs);
+static inline void z8530_isr(struct scc_info *info);
+static void rx_isr(struct device *dev);
+static void special_condition(struct device *dev, int rc);
+static void rx_bh(void *arg);
+static void tx_isr(struct device *dev);
+static void es_isr(struct device *dev);
+static void tm_isr(struct device *dev);
+static inline void delay(struct device *dev, int t);
+static inline unsigned char random(void);
+
+
+/* Initialization variables */
+
+static int io[MAX_NUM_DEVS] __initdata = { 0, };
+/* Beware! hw[] is also used in cleanup_module(). If __initdata also applies
+   to modules, we may not declare hw[] as __initdata */
+static struct scc_hardware hw[NUM_TYPES] __initdata = HARDWARE;
+static char ax25_broadcast[7] __initdata =
+  { 'Q'<<1, 'S'<<1, 'T'<<1, ' '<<1, ' '<<1, ' '<<1, '0'<<1 };
+static char ax25_test[7] __initdata =
+  { 'L'<<1, 'I'<<1, 'N'<<1, 'U'<<1, 'X'<<1, ' '<<1, '1'<<1 };
+
+
+/* Global variables */
+
+static struct scc_info *first = NULL;
+static unsigned long rand;
+
+
+
+/* Module functions */
+
+#ifdef MODULE
+
+
+MODULE_AUTHOR("Klaus Kudielka <oe1kib@oe1xtu.ampr.org>");
+MODULE_DESCRIPTION("Driver for high-speed SCC boards");
+MODULE_PARM(io, "1-" __MODULE_STRING(MAX_NUM_DEVS) "i");
+
+
+int init_module(void)
+{
+  return dmascc_init();
+}
+
+
+void cleanup_module(void)
+{
+  int i;
+  struct scc_info *info;
+
+  while (first) {
+    info = first;
+
+    /* Unregister devices */
+    for (i = 0; i < 2; i++) {
+      if (info->dev[i].name)
+	unregister_netdev(&info->dev[i]);
+    }
+
+    /* Reset board */
+    if (info->type == TYPE_TWIN)
+      outb_p(0, info->dev[0].base_addr + TWIN_SERIAL_CFG);
+    write_scc(info->priv[0].cmd, R9, FHWRES);
+    release_region(info->dev[0].base_addr,
+		   hw[info->type].io_size);
+
+    /* Free memory */
+    first = info->next;
+    kfree_s(info, sizeof(struct scc_info));
+  }
+}
+
+
+#else
+
+
+__initfunc(void dmascc_setup(char *str, int *ints))
+{
+   int i;
+
+   for (i = 0; i < MAX_NUM_DEVS && i < ints[0]; i++)
+      io[i] = ints[i+1];
+}
+
+
+#endif
+
+
+/* Initialization functions */
+
+__initfunc(int dmascc_init(void))
+{
+  int h, i, j, n, base[MAX_NUM_DEVS], tcmd, t0, t1, status;
+  unsigned long time, start[MAX_NUM_DEVS], stop[MAX_NUM_DEVS];
+
+  /* Initialize random number generator */
+  rand = jiffies;
+
+  /* Cards found = 0 */
+  n = 0;
+
+  /* Run autodetection for each card type */
+  for (h = 0; h < NUM_TYPES; h++) {
+
+    if (io[0]) {
+      /* User-specified I/O address regions */
+      for (i = 0; i < hw[h].num_devs; i++) base[i] = 0;
+      for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
+	j = (io[i] - hw[h].io_region) / hw[h].io_delta;
+	if (j >= 0 &&
+	    j < hw[h].num_devs && 
+	    hw[h].io_region + j * hw[h].io_delta == io[i])
+	  base[j] = io[i];
+      }
+    } else {
+      /* Default I/O address regions */
+      for (i = 0; i < hw[h].num_devs; i++)
+	base[i] = hw[h].io_region + i * hw[h].io_delta;
+    }
+
+    /* Check valid I/O address regions */
+    for (i = 0; i < hw[h].num_devs; i++)
+      if (base[i] && check_region(base[i], hw[h].io_size))
+	base[i] = 0;
+
+    /* Start timers */
+    for (i = 0; i < hw[h].num_devs; i++)
+      if (base[i]) {
+	tcmd = base[i] + hw[h].tmr_offset + TMR_CTRL;
+	t0   = base[i] + hw[h].tmr_offset + TMR_CNT0;
+	t1   = base[i] + hw[h].tmr_offset + TMR_CNT1;
+	/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
+	outb_p(0x36, tcmd);
+	outb_p((hw[h].tmr_hz/TMR_0_HZ) & 0xFF, t0);
+	outb_p((hw[h].tmr_hz/TMR_0_HZ) >> 8, t0);
+	/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
+	outb_p(0x70, tcmd);
+	outb_p((TMR_0_HZ/HZ*10) & 0xFF, t1);
+	outb_p((TMR_0_HZ/HZ*10) >> 8, t1);
+	/* Timer 2: LSB+MSB, Mode 0 */
+	outb_p(0xb0, tcmd);
+      }
+
+    /* Initialize start values in case we miss the null count bit */
+    time = jiffies;
+    for (i = 0; i < hw[h].num_devs; i++) start[i] = time;
+
+    /* Timing loop */
+    while (jiffies - time < 12) {
+      for (i = 0; i < hw[h].num_devs; i++)
+	if (base[i]) {
+	  /* Read back Timer 1: Status */
+	  outb_p(0xE4, base[i] + hw[h].tmr_offset + TMR_CTRL);
+	  status = inb_p(base[i] + hw[h].tmr_offset + TMR_CNT1);
+	  if ((status & 0x3F) != 0x30) base[i] = 0;
+	  if (status & 0x40) start[i] = jiffies;
+	  if (~status & 0x80) stop[i] = jiffies;
+	}
+    }
+
+    /* Evaluate measurements */
+    for (i = 0; i < hw[h].num_devs; i++)
+      if (base[i]) {
+	time = stop[i] - start[i];
+	if (time < 9 || time > 11)
+	  /* The time expired doesn't match */
+	  base[i] = 0;
+	else {
+	  /* Ok, we have found an adapter */
+	  if (setup_adapter(base[i], h, n) == 0)
+	    n++;
+	}
+      }
+
+  } /* NUM_TYPES */
+
+  /* If any adapter was successfully initialized, return ok */
+  if (n) return 0;
+
+  /* If no adapter found, return error */
+  printk("dmascc: no adapters found\n");
+  return -EIO;
+}
+
+
+__initfunc(int setup_adapter(int io, int h, int n))
+{
+  int i, irq, chip;
+  struct scc_info *info;
+  struct device *dev;
+  struct scc_priv *priv;
+  unsigned long time;
+  unsigned int irqs;
+  int tmr = io + hw[h].tmr_offset;
+  int scc = io + hw[h].scc_offset;
+  int cmd = scc + SCCA_CMD;
+  char *chipnames[] = CHIPNAMES;
+
+  /* Reset 8530 */
+  write_scc(cmd, R9, FHWRES | MIE | NV);
+
+  /* Determine type of chip */
+  write_scc(cmd, R15, 1);
+  if (!read_scc(cmd, R15)) {
+    /* WR7' not present. This is an ordinary Z8530 SCC. */
+    chip = Z8530;
+  } else {
+    /* Put one character in TX FIFO */
+    write_scc(cmd, R8, 0);
+    if (read_scc(cmd, R0) & Tx_BUF_EMP) {
+      /* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
+      chip = Z85230;
+    } else {
+      /* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
+      chip = Z85C30;
+    }
+  }
+  write_scc(cmd, R15, 0);
+
+  /* Start IRQ auto-detection */
+  sti();
+  irqs = probe_irq_on();
+
+  /* Enable interrupts */
+  switch (h) {
+  case TYPE_PI:
+  case TYPE_PI2:
+    outb_p(0, io + PI_DREQ_MASK);
+    write_scc(cmd, R15, CTSIE);
+    write_scc(cmd, R0, RES_EXT_INT);
+    write_scc(cmd, R1, EXT_INT_ENAB);
+    break;
+  case TYPE_TWIN:
+    outb_p(0, io + TWIN_DMA_CFG);
+    inb_p(io + TWIN_CLR_TMR1);
+    inb_p(io + TWIN_CLR_TMR2);
+    outb_p(TWIN_EI, io + TWIN_SERIAL_CFG);
+    break;
+  }
+
+  /* Start timer */
+  outb_p(1, tmr + TMR_CNT1);
+  outb_p(0, tmr + TMR_CNT1);
+  /* Wait and detect IRQ */
+  time = jiffies; while (jiffies - time < 2 + HZ / TMR_0_HZ);
+  irq = probe_irq_off(irqs);
+
+  /* Clear pending interrupt, disable interrupts */
+  switch (h) {
+  case TYPE_PI:
+  case TYPE_PI2:
+    write_scc(cmd, R1, 0);
+    write_scc(cmd, R15, 0);
+    write_scc(cmd, R0, RES_EXT_INT);
+    break;
+  case TYPE_TWIN:
+    inb_p(io + TWIN_CLR_TMR1);
+    outb_p(0, io + TWIN_SERIAL_CFG);
+    break;
+  }
+
+  if (irq <= 0) {
+    printk("dmascc: could not find irq of %s at %#3x (irq=%d)\n",
+	   hw[h].name, io, irq);
+    return -1;
+  }
+
+  /* Allocate memory */
+  info = kmalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
+  if (!info) {
+    printk("dmascc: could not allocate memory for %s at %#3x\n",
+	   hw[h].name, io);
+    return -1;
+  }
+
+  /* Set up data structures */
+  memset(info, 0, sizeof(struct scc_info));
+  info->type = h;
+  info->chip = chip;
+  info->scc_base = io + hw[h].scc_offset;
+  info->tmr_base = io + hw[h].tmr_offset;
+  info->twin_serial_cfg = 0;
+  for (i = 0; i < 2; i++) {
+    dev = &info->dev[i];
+    priv = &info->priv[i];
+    sprintf(priv->name, "dmascc%i", 2*n+i);
+    priv->info = info;
+    priv->channel = i;
+    priv->cmd = info->scc_base + (i ? SCCB_CMD : SCCA_CMD);
+    priv->data = info->scc_base + (i ? SCCB_DATA : SCCA_DATA);
+    priv->tmr = info->tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
+    priv->param.pclk_hz = hw[h].pclk_hz;
+    priv->param.brg_tc = -1;
+    priv->param.clocks = TCTRxCP | RCRTxCP;
+    priv->param.txdelay = TMR_0_HZ * 10 / 1000;
+    priv->param.txtime = HZ * 3;
+    priv->param.sqdelay = TMR_0_HZ * 1 / 1000;
+    priv->param.slottime = TMR_0_HZ * 10 / 1000;
+    priv->param.waittime = TMR_0_HZ * 100 / 1000;
+    priv->param.persist = 32;
+    priv->rx_task.routine = rx_bh;
+    priv->rx_task.data = dev;
+    dev->priv = priv;
+    dev->name = priv->name;
+    dev->base_addr = io;
+    dev->irq = irq;
+    dev->open = scc_open;
+    dev->stop = scc_close;
+    dev->do_ioctl = scc_ioctl;
+    dev->hard_start_xmit = scc_send_packet;
+    dev->get_stats = scc_get_stats;
+    dev->hard_header = ax25_encapsulate;
+    dev->rebuild_header = ax25_rebuild_header;
+    dev->set_mac_address = scc_set_mac_address;
+    dev->type = ARPHRD_AX25;
+    dev->hard_header_len = 73;
+    dev->mtu = 1500;
+    dev->addr_len = 7;
+    dev->tx_queue_len = 64;
+    memcpy(dev->broadcast, ax25_broadcast, 7);
+    memcpy(dev->dev_addr, ax25_test, 7);
+    dev->flags = 0;
+    dev_init_buffers(dev);
+    if (register_netdev(dev)) {
+      printk("dmascc: could not register %s\n", dev->name);
+      dev->name = NULL;
+    }
+  }
+
+  request_region(io, hw[h].io_size, "dmascc");
+
+  info->next = first;
+  first = info;
+  printk("dmascc: found %s (%s) at %#3x, irq %d\n", hw[h].name,
+	 chipnames[chip], io, irq);
+  return 0;
+}
+
+
+/* Driver functions */
+
+static inline void write_scc(int ctl, int reg, int val)
+{
+  outb_p(reg, ctl);
+  outb_p(val, ctl);
+}
+
+
+static inline int read_scc(int ctl, int reg)
+{
+  outb_p(reg, ctl);
+  return inb_p(ctl);
+}
+
+
+static int scc_open(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  struct scc_info *info = priv->info;
+  int io = dev->base_addr;
+  int cmd = priv->cmd;
+
+  /* Request IRQ if not already used by other channel */
+  if (!info->open) {
+    if (request_irq(dev->irq, scc_isr, SA_INTERRUPT, "dmascc", info))
+      return -EAGAIN;
+  }
+
+  /* Request DMA if required */
+  if (dev->dma && request_dma(dev->dma, "dmascc")) {
+    if (!info->open) free_irq(dev->irq, info);
+    return -EAGAIN;
+  }
+
+  /* Initialize local variables */
+  dev->tbusy = 0;
+  priv->rx_ptr = 0;
+  priv->rx_over = 0;
+  priv->rx_head = priv->rx_tail = priv->rx_count = 0;
+  priv->tx_state = TX_IDLE;
+  priv->tx_head = priv->tx_tail = priv->tx_count = 0;
+  priv->tx_ptr = 0;
+  priv->tx_sem = 0;
+
+  /* Reset channel */
+  write_scc(cmd, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
+  /* X1 clock, SDLC mode */
+  write_scc(cmd, R4, SDLC | X1CLK);
+  /* DMA */
+  write_scc(cmd, R1, EXT_INT_ENAB | WT_FN_RDYFN);
+  /* 8 bit RX char, RX disable */
+  write_scc(cmd, R3, Rx8);
+  /* 8 bit TX char, TX disable */
+  write_scc(cmd, R5, Tx8);
+  /* SDLC address field */
+  write_scc(cmd, R6, 0);
+  /* SDLC flag */
+  write_scc(cmd, R7, FLAG);
+  switch (info->chip) {
+  case Z85C30:
+    /* Select WR7' */
+    write_scc(cmd, R15, 1);
+    /* Auto EOM reset */
+    write_scc(cmd, R7, 0x02);
+    write_scc(cmd, R15, 0);
+    break;
+  case Z85230:
+    /* Select WR7' */
+    write_scc(cmd, R15, 1);
+    /* RX FIFO half full (interrupt only), Auto EOM reset,
+       TX FIFO empty (DMA only) */
+    write_scc(cmd, R7, dev->dma ? 0x22 : 0x0a);
+    write_scc(cmd, R15, 0);
+    break;
+  }
+  /* Preset CRC, NRZ(I) encoding */
+  write_scc(cmd, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
+
+  /* Configure baud rate generator */
+  if (priv->param.brg_tc >= 0) {
+    /* Program BR generator */
+    write_scc(cmd, R12, priv->param.brg_tc & 0xFF);
+    write_scc(cmd, R13, (priv->param.brg_tc>>8) & 0xFF);
+    /* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
+       PackeTwin, not connected on the PI2); set DPLL source to BRG */
+    write_scc(cmd, R14, SSBR | DTRREQ | BRSRC | BRENABL);
+    /* Enable DPLL */
+    write_scc(cmd, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
+  } else {
+    /* Disable BR generator */
+    write_scc(cmd, R14, DTRREQ | BRSRC);
+  }
+
+  /* Configure clocks */
+  if (info->type == TYPE_TWIN) {
+    /* Disable external TX clock receiver */
+    outb_p((info->twin_serial_cfg &=
+	    ~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)), 
+	   io + TWIN_SERIAL_CFG);
+  }
+  write_scc(cmd, R11, priv->param.clocks);
+  if ((info->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
+    /* Enable external TX clock receiver */
+    outb_p((info->twin_serial_cfg |=
+	    (priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
+	   io + TWIN_SERIAL_CFG);
+  }
+
+  /* Configure PackeTwin */
+  if (info->type == TYPE_TWIN) {
+    /* Assert DTR, enable interrupts */
+    outb_p((info->twin_serial_cfg |= TWIN_EI |
+	    (priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
+	   io + TWIN_SERIAL_CFG);
+  }
+
+  /* Read current status */
+  priv->status = read_scc(cmd, R0);
+  /* Enable SYNC, DCD, and CTS interrupts */
+  write_scc(cmd, R15, DCDIE | CTSIE | SYNCIE);
+
+  /* Configure PI2 DMA */
+  if (info->type <= TYPE_PI2) outb_p(1, io + PI_DREQ_MASK);
+
+  dev->start = 1;
+  info->open++;
+  MOD_INC_USE_COUNT;
+
+  return 0;
+}
+
+
+static int scc_close(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  struct scc_info *info = priv->info;
+  int io = dev->base_addr;
+  int cmd = priv->cmd;
+
+  dev->start = 0;
+  info->open--;
+  MOD_DEC_USE_COUNT;
+
+  if (info->type == TYPE_TWIN)
+    /* Drop DTR */
+    outb_p((info->twin_serial_cfg &=
+	    (priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
+	   io + TWIN_SERIAL_CFG);
+
+  /* Reset channel, free DMA */
+  write_scc(cmd, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
+  if (dev->dma) {
+    if (info->type == TYPE_TWIN) outb_p(0, io + TWIN_DMA_CFG);
+    free_dma(dev->dma);
+  }
+
+  if (!info->open) {
+    if (info->type <= TYPE_PI2) outb_p(0, io + PI_DREQ_MASK);
+    free_irq(dev->irq, info);
+  }
+  return 0;
+}
+
+
+static int scc_ioctl(struct device *dev, struct ifreq *ifr, int cmd)
+{
+  int rc;
+  struct scc_priv *priv = dev->priv;
+  
+  switch (cmd) {
+  case SIOCGSCCPARAM:
+    rc = verify_area(VERIFY_WRITE, ifr->ifr_data, sizeof(struct scc_param));
+    if (rc) return rc;
+    copy_to_user(ifr->ifr_data, &priv->param, sizeof(struct scc_param));
+    return 0;
+  case SIOCSSCCPARAM:
+    if (!suser()) return -EPERM;
+    rc = verify_area(VERIFY_READ, ifr->ifr_data, sizeof(struct scc_param));
+    if (rc) return rc;
+    if (dev->start) return -EAGAIN;
+    copy_from_user(&priv->param, ifr->ifr_data, sizeof(struct scc_param));
+    dev->dma = priv->param.dma;
+    return 0;
+  default:
+    return -EINVAL;
+  }
+}
+
+
+static int scc_send_packet(struct sk_buff *skb, struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  struct scc_info *info = priv->info;
+  int cmd = priv->cmd;
+  unsigned long flags;
+  int i;
+
+  /* Block a timer-based transmit from overlapping */
+  if (test_and_set_bit(0, (void *) &priv->tx_sem) != 0) {
+    atomic_inc((void *) &priv->stats.tx_dropped);
+    dev_kfree_skb(skb, FREE_WRITE);
+    return 0;
+  }
+
+  /* Return with an error if we cannot accept more data */
+  if (dev->tbusy) {
+    priv->tx_sem = 0;
+    return -1;
+  }
+
+  /* Transfer data to DMA buffer */
+  i = priv->tx_head;
+  memcpy(priv->tx_buf[i], skb->data+1, skb->len-1);
+  priv->tx_len[i] = skb->len-1;
+
+  save_flags(flags);
+  cli();
+
+  /* Set the busy flag if we just filled up the last buffer */
+  priv->tx_head = (i + 1) % NUM_TX_BUF;
+  priv->tx_count++;
+  if (priv->tx_count == NUM_TX_BUF) dev->tbusy = 1;
+
+  /* Set new TX state */
+  if (priv->tx_state == TX_IDLE) {
+    /* Assert RTS, start timer */
+    priv->tx_state = TX_TXDELAY;
+    if (info->type <= TYPE_PI2) outb_p(0, dev->base_addr + PI_DREQ_MASK);
+    write_scc(cmd, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
+    if (info->type <= TYPE_PI2) outb_p(1, dev->base_addr + PI_DREQ_MASK);
+    priv->tx_start = jiffies;
+    delay(dev, priv->param.txdelay);
+  }
+
+  restore_flags(flags);
+
+  dev_kfree_skb(skb, FREE_WRITE);
+
+  priv->tx_sem = 0;
+  return 0;
+}
+
+
+static struct enet_statistics *scc_get_stats(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+
+  return &priv->stats;
+}
+
+
+static int scc_set_mac_address(struct device *dev, void *sa)
+{
+  memcpy(dev->dev_addr, ((struct sockaddr *)sa)->sa_data, dev->addr_len);
+  return 0;
+}
+
+
+static void scc_isr(int irq, void *dev_id, struct pt_regs * regs)
+{
+  struct scc_info *info = dev_id;
+  int is, io = info->dev[0].base_addr;
+
+  /* We're a fast IRQ handler and are called with interrupts disabled */
+
+  /* IRQ sharing doesn't make sense due to ISA's edge-triggered
+     interrupts, hence it is safe to return if we have found and
+     processed a single device. */
+
+  /* Interrupt processing: We loop until we know that the IRQ line is
+     low. If another positive edge occurs afterwards during the ISR,
+     another interrupt will be triggered by the interrupt controller
+     as soon as the IRQ level is enabled again (see asm/irq.h). */
+
+  switch (info->type) {
+  case TYPE_PI:
+  case TYPE_PI2:
+    outb_p(0, io + PI_DREQ_MASK);
+    z8530_isr(info);
+    outb_p(1, io + PI_DREQ_MASK);
+    return;
+  case TYPE_TWIN:
+    while ((is = ~inb_p(io + TWIN_INT_REG)) &
+	   TWIN_INT_MSK) {
+      if (is & TWIN_SCC_MSK) {
+	z8530_isr(info);
+      } else if (is & TWIN_TMR1_MSK) {
+	inb_p(io + TWIN_CLR_TMR1);
+	tm_isr(&info->dev[0]);
+      } else {
+	inb_p(io + TWIN_CLR_TMR2);
+	tm_isr(&info->dev[1]);
+      }
+    }
+    /* No interrupts pending from the PackeTwin */
+    return;
+  }
+}
+
+
+static inline void z8530_isr(struct scc_info *info)
+{
+  int is, a_cmd;
+  
+  a_cmd = info->scc_base + SCCA_CMD;
+
+  while ((is = read_scc(a_cmd, R3))) {
+    if (is & CHARxIP) {
+      rx_isr(&info->dev[0]);
+    } else if (is & CHATxIP) {
+      tx_isr(&info->dev[0]);
+    } else if (is & CHAEXT) {
+      es_isr(&info->dev[0]);
+    } else if (is & CHBRxIP) {
+      rx_isr(&info->dev[1]);
+    } else if (is & CHBTxIP) {
+      tx_isr(&info->dev[1]);
+    } else {
+      es_isr(&info->dev[1]);
+    }
+  }
+  /* Ok, no interrupts pending from this 8530. The INT line should
+     be inactive now. */
+}
+
+
+static void rx_isr(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  int cmd = priv->cmd;
+
+  if (dev->dma) {
+    /* Check special condition and perform error reset. See 2.4.7.5. */
+    special_condition(dev, read_scc(cmd, R1));
+    write_scc(cmd, R0, ERR_RES);
+  } else {
+    /* Check special condition for each character. Error reset not necessary.
+       Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
+    int rc;
+    while (read_scc(cmd, R0) & Rx_CH_AV) {
+      rc = read_scc(cmd, R1);
+      if (priv->rx_ptr < BUF_SIZE)
+	priv->rx_buf[priv->rx_head][priv->rx_ptr++] = read_scc(cmd, R8);
+      else {
+	priv->rx_over = 2;
+	read_scc(cmd, R8);
+      }
+      special_condition(dev, rc);
+    }
+  }
+}
+
+
+static void special_condition(struct device *dev, int rc)
+{
+  struct scc_priv *priv = dev->priv;
+  int cb, cmd = priv->cmd;
+
+  /* See Figure 2-15. Only overrun and EOF need to be checked. */
+  
+  if (rc & Rx_OVR) {
+    /* Receiver overrun */
+    priv->rx_over = 1;
+    if (!dev->dma) write_scc(cmd, R0, ERR_RES);
+  } else if (rc & END_FR) {
+    /* End of frame. Get byte count */
+    if (dev->dma) {
+	disable_dma(dev->dma);
+	clear_dma_ff(dev->dma);
+	cb = BUF_SIZE - get_dma_residue(dev->dma) - 2;
+    } else {
+	cb = priv->rx_ptr - 2;
+    }
+    if (priv->rx_over) {
+      /* We had an overrun */
+      priv->stats.rx_errors++;
+      if (priv->rx_over == 2) priv->stats.rx_length_errors++;
+      else priv->stats.rx_fifo_errors++;
+      priv->rx_over = 0;
+    } else if (rc & CRC_ERR) {
+      /* Count invalid CRC only if packet length >= minimum */
+      if (cb >= 8) {
+	priv->stats.rx_errors++;
+	priv->stats.rx_crc_errors++;
+      }
+    } else {
+      if (cb >= 8) {
+	/* Put good frame in FIFO */
+	priv->rx_len[priv->rx_head] = cb;
+	priv->rx_head = (priv->rx_head + 1) % NUM_RX_BUF;
+	priv->rx_count++;
+	if (priv->rx_count == NUM_RX_BUF) {
+	  /* Disable receiver if FIFO full */
+	  write_scc(cmd, R3, Rx8);
+	  priv->stats.rx_errors++;
+	  priv->stats.rx_over_errors++;
+	}
+	/* Mark bottom half handler */
+	queue_task(&priv->rx_task, &tq_immediate);
+	mark_bh(IMMEDIATE_BH);
+      }
+    }
+    /* Get ready for new frame */
+    if (dev->dma) {
+      set_dma_addr(dev->dma, (int) priv->rx_buf[priv->rx_head]);
+      set_dma_count(dev->dma, BUF_SIZE);
+      enable_dma(dev->dma);
+    } else {
+      priv->rx_ptr = 0;
+    }
+  }
+}
+
+
+static void rx_bh(void *arg)
+{
+  struct device *dev = arg;
+  struct scc_priv *priv = dev->priv;
+  struct scc_info *info = priv->info;
+  int cmd = priv->cmd;
+  int i = priv->rx_tail;
+  int cb;
+  unsigned long flags;
+  struct sk_buff *skb;
+  unsigned char *data;
+
+  save_flags(flags);
+  cli();
+
+  while (priv->rx_count) {
+    restore_flags(flags);
+    cb = priv->rx_len[i];
+    /* Allocate buffer */
+    skb = dev_alloc_skb(cb+1);
+    if (skb == NULL) {
+      /* Drop packet */
+      priv->stats.rx_dropped++;
+    } else {
+      /* Fill buffer */
+      data = skb_put(skb, cb+1);
+      data[0] = 0;
+      memcpy(&data[1], priv->rx_buf[i], cb);
+      skb->dev = dev;
+      skb->protocol = ntohs(ETH_P_AX25);
+      skb->mac.raw = skb->data;
+      netif_rx(skb);
+      priv->stats.rx_packets++;
+    }
+    save_flags(flags);
+    cli();
+    /* Enable receiver if RX buffers have been unavailable */
+    if ((priv->rx_count == NUM_RX_BUF) && (priv->status & DCD)) {
+      if (info->type <= TYPE_PI2) outb_p(0, dev->base_addr + PI_DREQ_MASK);
+      write_scc(cmd, R3, RxENABLE | Rx8 | RxCRC_ENAB);
+      if (info->type <= TYPE_PI2) outb_p(1, dev->base_addr + PI_DREQ_MASK);
+    }
+    /* Move tail */
+    priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
+    priv->rx_count--;
+  }
+
+  restore_flags(flags);
+}
+
+
+static void tx_isr(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  int cmd = priv->cmd;
+  int i = priv->tx_tail, p = priv->tx_ptr;
+
+  /* Suspend TX interrupts if we don't want to send anything.
+     See Figure 2-22. */
+  if (p ==  priv->tx_len[i]) {
+    write_scc(cmd, R0, RES_Tx_P);
+    return;
+  }
+
+  /* Write characters */
+  while ((read_scc(cmd, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
+    write_scc(cmd, R8, priv->tx_buf[i][p++]);
+  }
+  priv->tx_ptr = p;
+
+}
+
+
+static void es_isr(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  struct scc_info *info = priv->info;
+  int i, cmd = priv->cmd;
+  int st, dst, res;
+
+  /* Read status and reset interrupt bit */
+  st = read_scc(cmd, R0);
+  write_scc(cmd, R0, RES_EXT_INT);
+  dst = priv->status ^ st;
+  priv->status = st;
+
+  /* Since the EOM latch is reset automatically, we assume that
+     it has been zero if and only if we are in the TX_ACTIVE state.
+     Otherwise we follow 2.4.9.6. */
+
+  /* Transmit underrun */
+  if ((priv->tx_state == TX_ACTIVE) && (st & TxEOM)) {
+    /* Get remaining bytes */
+    i = priv->tx_tail;
+    if (dev->dma) {
+      disable_dma(dev->dma);
+      clear_dma_ff(dev->dma);
+      res = get_dma_residue(dev->dma);
+    } else {
+      res = priv->tx_len[i] - priv->tx_ptr;
+      if (res) write_scc(cmd, R0, RES_Tx_P);
+      priv->tx_ptr = 0;
+    }
+    /* Remove frame from FIFO */
+    priv->tx_tail = (i + 1) % NUM_TX_BUF;
+    priv->tx_count--;
+    dev->tbusy = 0;
+    /* Check if another frame is available and we are allowed to transmit */
+    if (priv->tx_count && (jiffies - priv->tx_start) < priv->param.txtime) {
+      if (dev->dma) {
+	set_dma_addr(dev->dma, (int) priv->tx_buf[priv->tx_tail]);
+	set_dma_count(dev->dma, priv->tx_len[priv->tx_tail]);
+	enable_dma(dev->dma);
+      } else {
+	/* If we have an ESCC, we are allowed to write data bytes
+	   immediately. Otherwise we have to wait for the next
+	   TX interrupt. See Figure 2-22. */
+	if (info->chip == Z85230) {
+	  tx_isr(dev);
+	}
+      }
+    } else {
+      /* No frame available. Disable interrupts. */
+      priv->tx_state = TX_SQDELAY;
+      delay(dev, priv->param.sqdelay);
+      write_scc(cmd, R15, DCDIE | CTSIE | SYNCIE);
+      write_scc(cmd, R1, EXT_INT_ENAB | WT_FN_RDYFN);
+    }
+    /* Update packet statistics */
+    if (res) {
+      priv->stats.tx_errors++;
+      priv->stats.tx_fifo_errors++;
+    } else {
+      priv->stats.tx_packets++;
+    }
+    /* Inform upper layers */
+    mark_bh(NET_BH);
+  }
+
+  /* DCD transition */
+  if ((priv->tx_state < TX_TXDELAY) && (dst & DCD)) {
+    /* Transmitter state change */
+    priv->tx_state = TX_OFF;
+    /* Enable or disable receiver */
+    if (st & DCD) {
+      if (dev->dma) {
+	/* Program DMA controller */
+	disable_dma(dev->dma);
+	clear_dma_ff(dev->dma);
+	set_dma_mode(dev->dma, DMA_MODE_READ);
+	set_dma_addr(dev->dma, (int) priv->rx_buf[priv->rx_head]);
+	set_dma_count(dev->dma, BUF_SIZE);
+	enable_dma(dev->dma);
+	/* Configure PackeTwin DMA */
+	if (info->type == TYPE_TWIN) {
+	  outb_p((dev->dma == 1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
+		 dev->base_addr + TWIN_DMA_CFG);
+	}
+	/* Sp. cond. intr. only, ext int enable */
+	write_scc(cmd, R1, EXT_INT_ENAB | INT_ERR_Rx |
+		  WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
+      } else {
+	/* Intr. on all Rx characters and Sp. cond., ext int enable */
+	write_scc(cmd, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
+		  WT_FN_RDYFN);
+      }
+      if (priv->rx_count < NUM_RX_BUF) {
+	/* Enable receiver */
+	write_scc(cmd, R3, RxENABLE | Rx8 | RxCRC_ENAB);
+      }
+    } else {
+      /* Disable DMA */
+      if (dev->dma) disable_dma(dev->dma);
+      /* Disable receiver */
+      write_scc(cmd, R3, Rx8);
+      /* DMA disable, RX int disable, Ext int enable */
+      write_scc(cmd, R1, EXT_INT_ENAB | WT_RDY_RT | WT_FN_RDYFN);
+      /* Transmitter state change */
+      if (random() > priv->param.persist)
+	delay(dev, priv->param.slottime);
+      else {
+	if (priv->tx_count) {
+	  priv->tx_state = TX_TXDELAY;
+	  write_scc(cmd, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
+	  priv->tx_start = jiffies;
+	  delay(dev, priv->param.txdelay);
+	} else {
+	  priv->tx_state = TX_IDLE;
+	}
+      }
+    }
+  }
+
+  /* CTS transition */
+  if ((info->type <= TYPE_PI2) && (dst & CTS) && (~st & CTS)) {
+    /* Timer has expired */
+    tm_isr(dev);
+  }
+
+  /* /SYNC/HUNT transition */
+  if ((dst & SYNC_HUNT) && (~st & SYNC_HUNT)) {
+    /* Reset current frame and clear RX FIFO */
+    while (read_scc(cmd, R0) & Rx_CH_AV) read_scc(cmd, R8);
+    priv->rx_over = 0;
+    if (dev->dma) {
+      disable_dma(dev->dma);
+      clear_dma_ff(dev->dma);
+      set_dma_addr(dev->dma, (int) priv->rx_buf[priv->rx_head]);
+      set_dma_count(dev->dma, BUF_SIZE);
+      enable_dma(dev->dma);
+    } else {
+      priv->rx_ptr = 0;
+    }
+  }
+}
+
+
+static void tm_isr(struct device *dev)
+{
+  struct scc_priv *priv = dev->priv;
+  struct scc_info *info = priv->info;
+  int cmd = priv->cmd;
+
+  switch (priv->tx_state) {
+  case TX_OFF:
+    if (~priv->status & DCD) {
+      if (random() > priv->param.persist) delay(dev, priv->param.slottime);
+      else {
+	if (priv->tx_count) {
+	  priv->tx_state = TX_TXDELAY;
+	  write_scc(cmd, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
+	  priv->tx_start = jiffies;
+	  delay(dev, priv->param.txdelay);
+	} else {
+	  priv->tx_state = TX_IDLE;
+	}
+      }
+    }
+    break;
+  case TX_TXDELAY:
+    priv->tx_state = TX_ACTIVE;
+    if (dev->dma) {
+      /* Program DMA controller */
+      disable_dma(dev->dma);
+      clear_dma_ff(dev->dma);
+      set_dma_mode(dev->dma, DMA_MODE_WRITE);
+      set_dma_addr(dev->dma, (int) priv->tx_buf[priv->tx_tail]);
+      set_dma_count(dev->dma, priv->tx_len[priv->tx_tail]);
+      enable_dma(dev->dma);
+      /* Configure PackeTwin DMA */
+      if (info->type == TYPE_TWIN) {
+	outb_p((dev->dma == 1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
+	       dev->base_addr + TWIN_DMA_CFG);
+      }
+      /* Enable interrupts and DMA. On the PackeTwin, the DTR//REQ pin
+	 is used for TX DMA requests, but we enable the WAIT/DMA request
+	 pin, anyway */
+      write_scc(cmd, R15, TxUIE | DCDIE | CTSIE | SYNCIE);
+      write_scc(cmd, R1, EXT_INT_ENAB | WT_FN_RDYFN | WT_RDY_ENAB);
+    } else {
+      write_scc(cmd, R15, TxUIE | DCDIE | CTSIE | SYNCIE);
+      write_scc(cmd, R1, EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
+      tx_isr(dev);
+    }
+    if (info->chip == Z8530) write_scc(cmd, R0, RES_EOM_L);
+    break;
+  case TX_SQDELAY:
+    /* Disable transmitter */
+    write_scc(cmd, R5, TxCRC_ENAB | Tx8);
+    /* Transmitter state change: Switch to TX_OFF and wait at least
+       1 slottime. */
+    priv->tx_state = TX_OFF;    
+    if (~priv->status & DCD) delay(dev, priv->param.waittime);
+  }
+}
+
+
+static inline void delay(struct device *dev, int t)
+{
+  struct scc_priv *priv = dev->priv;
+  int tmr = priv->tmr;
+
+  outb_p(t & 0xFF, tmr);
+  outb_p((t >> 8) & 0xFF, tmr);
+}
+
+
+static inline unsigned char random(void)
+{
+  /* See "Numerical Recipes in C", second edition, p. 284 */
+  rand = rand * 1664525L + 1013904223L;
+  return (unsigned char) (rand >> 24);
+}
+
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov