patch-2.1.80 linux/include/asm-arm/proc-armv/pgtable.h
Next file: linux/include/asm-arm/proc-armv/processor.h
Previous file: linux/include/asm-arm/proc-armv/param.h
Back to the patch index
Back to the overall index
- Lines: 618
- Date:
Tue Jan 20 16:39:43 1998
- Orig file:
v2.1.79/linux/include/asm-arm/proc-armv/pgtable.h
- Orig date:
Wed Dec 31 16:00:00 1969
diff -u --recursive --new-file v2.1.79/linux/include/asm-arm/proc-armv/pgtable.h linux/include/asm-arm/proc-armv/pgtable.h
@@ -0,0 +1,617 @@
+/*
+ * linux/include/asm-arm/proc-armv/pgtable.h
+ *
+ * Copyright (C) 1995, 1996, 1997 Russell King
+ *
+ * 12-01-1997 RMK Altered flushing routines to use function pointers
+ * now possible to combine ARM6, ARM7 and StrongARM versions.
+ */
+#ifndef __ASM_PROC_PGTABLE_H
+#define __ASM_PROC_PGTABLE_H
+
+#include <asm/arch/mmu.h>
+
+#define LIBRARY_TEXT_START 0x0c000000
+
+/*
+ * Cache flushing...
+ */
+#define flush_cache_all() \
+ processor.u.armv3v4._flush_cache_all()
+
+#define flush_cache_mm(_mm) \
+ do { \
+ if ((_mm) == current->mm) \
+ processor.u.armv3v4._flush_cache_all(); \
+ } while (0)
+
+#define flush_cache_range(_mm,_start,_end) \
+ do { \
+ if ((_mm) == current->mm) \
+ processor.u.armv3v4._flush_cache_area \
+ ((_start), (_end), 1); \
+ } while (0)
+
+#define flush_cache_page(_vma,_vmaddr) \
+ do { \
+ if ((_vma)->vm_mm == current->mm) \
+ processor.u.armv3v4._flush_cache_area \
+ ((_vmaddr), (_vmaddr) + PAGE_SIZE, \
+ ((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \
+ } while (0)
+
+#define flush_icache_range(_start,_end) \
+ processor.u.armv3v4._flush_icache_area((_start), (_end))
+
+/*
+ * We don't have a mem map cache...
+ */
+#define update_mm_cache_all() do { } while (0)
+#define update_mm_cache_task(tsk) do { } while (0)
+#define update_mm_cache_mm(mm) do { } while (0)
+#define update_mm_cache_mm_addr(mm,addr,pte) do { } while (0)
+
+/*
+ * This flushes back any buffered write data. We have to clean and flush the entries
+ * in the cache for this page. Is it necessary to invalidate the I-cache?
+ */
+#define flush_page_to_ram(_page) \
+ processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);
+
+/*
+ * Make the page uncacheable (must flush page beforehand).
+ */
+#define uncache_page(_page) \
+ processor.u.armv3v4._flush_ram_page ((_page) & PAGE_MASK);
+
+/*
+ * TLB flushing:
+ *
+ * - flush_tlb() flushes the current mm struct TLBs
+ * - flush_tlb_all() flushes all processes TLBs
+ * - flush_tlb_mm(mm) flushes the specified mm context TLB's
+ * - flush_tlb_page(vma, vmaddr) flushes one page
+ * - flush_tlb_range(mm, start, end) flushes a range of pages
+ *
+ * GCC uses conditional instructions, and expects the assembler code to do so as well.
+ *
+ * We drain the write buffer in here to ensure that the page tables in ram
+ * are really up to date. It is more efficient to do this here...
+ */
+#define flush_tlb() flush_tlb_all()
+
+#define flush_tlb_all() \
+ processor.u.armv3v4._flush_tlb_all()
+
+#define flush_tlb_mm(_mm) \
+ do { \
+ if ((_mm) == current->mm) \
+ processor.u.armv3v4._flush_tlb_all(); \
+ } while (0)
+
+#define flush_tlb_range(_mm,_start,_end) \
+ do { \
+ if ((_mm) == current->mm) \
+ processor.u.armv3v4._flush_tlb_area \
+ ((_start), (_end), 1); \
+ } while (0)
+
+#define flush_tlb_page(_vma,_vmaddr) \
+ do { \
+ if ((_vma)->vm_mm == current->mm) \
+ processor.u.armv3v4._flush_tlb_area \
+ ((_vmaddr), (_vmaddr) + PAGE_SIZE, \
+ ((_vma)->vm_flags & VM_EXEC) ? 1 : 0); \
+ } while (0)
+
+/*
+ * Since the page tables are in cached memory, we need to flush the dirty
+ * data cached entries back before we flush the tlb... This is also useful
+ * to flush out the SWI instruction for signal handlers...
+ */
+#define __flush_entry_to_ram(entry) \
+ processor.u.armv3v4._flush_cache_entry((unsigned long)(entry))
+
+#define __flush_pte_to_ram(entry) \
+ processor.u.armv3v4._flush_cache_pte((unsigned long)(entry))
+
+/* PMD_SHIFT determines the size of the area a second-level page table can map */
+#define PMD_SHIFT 20
+#define PMD_SIZE (1UL << PMD_SHIFT)
+#define PMD_MASK (~(PMD_SIZE-1))
+
+/* PGDIR_SHIFT determines what a third-level page table entry can map */
+#define PGDIR_SHIFT 20
+#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
+#define PGDIR_MASK (~(PGDIR_SIZE-1))
+
+/*
+ * entries per page directory level: the sa110 is two-level, so
+ * we don't really have any PMD directory physically.
+ */
+#define PTRS_PER_PTE 256
+#define PTRS_PER_PMD 1
+#define PTRS_PER_PGD 4096
+
+/* Just any arbitrary offset to the start of the vmalloc VM area: the
+ * current 8MB value just means that there will be a 8MB "hole" after the
+ * physical memory until the kernel virtual memory starts. That means that
+ * any out-of-bounds memory accesses will hopefully be caught.
+ * The vmalloc() routines leaves a hole of 4kB between each vmalloced
+ * area for the same reason. ;)
+ */
+#define VMALLOC_OFFSET (8*1024*1024)
+#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
+#define VMALLOC_VMADDR(x) ((unsigned long)(x))
+
+/* PMD types (actually level 1 descriptor) */
+#define PMD_TYPE_MASK 0x0003
+#define PMD_TYPE_FAULT 0x0000
+#define PMD_TYPE_TABLE 0x0001
+#define PMD_TYPE_SECT 0x0002
+#define PMD_UPDATABLE 0x0010
+#define PMD_SECT_CACHEABLE 0x0008
+#define PMD_SECT_BUFFERABLE 0x0004
+#define PMD_SECT_AP_WRITE 0x0400
+#define PMD_SECT_AP_READ 0x0800
+#define PMD_DOMAIN(x) ((x) << 5)
+
+/* PTE types (actially level 2 descriptor) */
+#define PTE_TYPE_MASK 0x0003
+#define PTE_TYPE_FAULT 0x0000
+#define PTE_TYPE_LARGE 0x0001
+#define PTE_TYPE_SMALL 0x0002
+#define PTE_AP_READ 0x0aa0
+#define PTE_AP_WRITE 0x0550
+#define PTE_CACHEABLE 0x0008
+#define PTE_BUFFERABLE 0x0004
+
+/* Domains */
+#define DOMAIN_USER 0
+#define DOMAIN_KERNEL 1
+#define DOMAIN_TABLE 1
+#define DOMAIN_IO 2
+
+#define _PAGE_CHG_MASK (0xfffff00c | PTE_TYPE_MASK)
+
+/*
+ * We define the bits in the page tables as follows:
+ * PTE_BUFFERABLE page is dirty
+ * PTE_AP_WRITE page is writable
+ * PTE_AP_READ page is a young (unsetting this causes faults for any access)
+ *
+ * Any page that is mapped in is assumed to be readable...
+ */
+#define PAGE_NONE __pgprot(PTE_TYPE_SMALL)
+#define PAGE_SHARED __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ | PTE_AP_WRITE)
+#define PAGE_COPY __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ)
+#define PAGE_READONLY __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_AP_READ)
+#define PAGE_KERNEL __pgprot(PTE_TYPE_SMALL | PTE_CACHEABLE | PTE_BUFFERABLE | PTE_AP_WRITE)
+
+#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_USER))
+#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_DOMAIN(DOMAIN_KERNEL))
+
+/*
+ * The arm can't do page protection for execute, and considers that the same are read.
+ * Also, write permissions imply read permissions. This is the closest we can get..
+ */
+#define __P000 PAGE_NONE
+#define __P001 PAGE_READONLY
+#define __P010 PAGE_COPY
+#define __P011 PAGE_COPY
+#define __P100 PAGE_READONLY
+#define __P101 PAGE_READONLY
+#define __P110 PAGE_COPY
+#define __P111 PAGE_COPY
+
+#define __S000 PAGE_NONE
+#define __S001 PAGE_READONLY
+#define __S010 PAGE_SHARED
+#define __S011 PAGE_SHARED
+#define __S100 PAGE_READONLY
+#define __S101 PAGE_READONLY
+#define __S110 PAGE_SHARED
+#define __S111 PAGE_SHARED
+
+#undef TEST_VERIFY_AREA
+
+/*
+ * BAD_PAGETABLE is used when we need a bogus page-table, while
+ * BAD_PAGE is used for a bogus page.
+ *
+ * ZERO_PAGE is a global shared page that is always zero: used
+ * for zero-mapped memory areas etc..
+ */
+extern pte_t __bad_page(void);
+extern pte_t * __bad_pagetable(void);
+extern unsigned long *empty_zero_page;
+
+#define BAD_PAGETABLE __bad_pagetable()
+#define BAD_PAGE __bad_page()
+#define ZERO_PAGE ((unsigned long) empty_zero_page)
+
+/* number of bits that fit into a memory pointer */
+#define BYTES_PER_PTR (sizeof(unsigned long))
+#define BITS_PER_PTR (8*BYTES_PER_PTR)
+
+/* to align the pointer to a pointer address */
+#define PTR_MASK (~(sizeof(void*)-1))
+
+/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
+#define SIZEOF_PTR_LOG2 2
+
+/* to find an entry in a page-table */
+#define PAGE_PTR(address) \
+((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
+
+/* to set the page-dir */
+#define SET_PAGE_DIR(tsk,pgdir) \
+do { \
+ tsk->tss.memmap = __virt_to_phys(pgdir); \
+ if ((tsk) == current) \
+ __asm__ __volatile__( \
+ "mcr%? p15, 0, %0, c2, c0, 0\n" \
+ : : "r" (tsk->tss.memmap)); \
+} while (0)
+
+extern __inline__ int pte_none(pte_t pte)
+{
+ return !pte_val(pte);
+}
+
+#define pte_clear(ptep) set_pte(ptep, __pte(0))
+
+extern __inline__ int pte_present(pte_t pte)
+{
+ switch (pte_val(pte) & PTE_TYPE_MASK) {
+ case PTE_TYPE_LARGE:
+ case PTE_TYPE_SMALL:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+extern __inline__ int pmd_none(pmd_t pmd)
+{
+ return !pmd_val(pmd);
+}
+
+#define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0))
+
+extern __inline__ int pmd_bad(pmd_t pmd)
+{
+ switch (pmd_val(pmd) & PMD_TYPE_MASK) {
+ case PMD_TYPE_FAULT:
+ case PMD_TYPE_TABLE:
+ return 0;
+ default:
+ return 1;
+ }
+}
+
+extern __inline__ int pmd_present(pmd_t pmd)
+{
+ switch (pmd_val(pmd) & PMD_TYPE_MASK) {
+ case PMD_TYPE_TABLE:
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+/*
+ * The "pgd_xxx()" functions here are trivial for a folded two-level
+ * setup: the pgd is never bad, and a pmd always exists (as it's folded
+ * into the pgd entry)
+ */
+#define pgd_none(pgd) (0)
+#define pgd_bad(pgd) (0)
+#define pgd_present(pgd) (1)
+#define pgd_clear(pgdp)
+
+/*
+ * The following only work if pte_present() is true.
+ * Undefined behaviour if not..
+ */
+#define pte_read(pte) (1)
+#define pte_exec(pte) (1)
+
+extern __inline__ int pte_write(pte_t pte)
+{
+ return pte_val(pte) & PTE_AP_WRITE;
+}
+
+extern __inline__ int pte_cacheable(pte_t pte)
+{
+ return pte_val(pte) & PTE_CACHEABLE;
+}
+
+extern __inline__ int pte_dirty(pte_t pte)
+{
+ return pte_val(pte) & PTE_BUFFERABLE;
+}
+
+extern __inline__ int pte_young(pte_t pte)
+{
+ return pte_val(pte) & PTE_AP_READ;
+}
+
+extern __inline__ pte_t pte_wrprotect(pte_t pte)
+{
+ pte_val(pte) &= ~PTE_AP_WRITE;
+ return pte;
+}
+
+extern __inline__ pte_t pte_nocache(pte_t pte)
+{
+ pte_val(pte) &= ~PTE_CACHEABLE;
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkclean(pte_t pte)
+{
+ pte_val(pte) &= ~PTE_BUFFERABLE;
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkold(pte_t pte)
+{
+ pte_val(pte) &= ~PTE_AP_READ;
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkwrite(pte_t pte)
+{
+ pte_val(pte) |= PTE_AP_WRITE;
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkdirty(pte_t pte)
+{
+ pte_val(pte) |= PTE_BUFFERABLE;
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkyoung(pte_t pte)
+{
+ pte_val(pte) |= PTE_AP_READ;
+ return pte;
+}
+
+/*
+ * The following are unable to be implemented on this MMU
+ */
+#if 0
+extern __inline__ pte_t pte_rdprotect(pte_t pte)
+{
+ pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);
+ return pte;
+}
+
+extern __inline__ pte_t pte_exprotect(pte_t pte)
+{
+ pte_val(pte) &= ~(PTE_CACHEABLE|PTE_AP_READ);
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkread(pte_t pte)
+{
+ pte_val(pte) |= PTE_CACHEABLE;
+ return pte;
+}
+
+extern __inline__ pte_t pte_mkexec(pte_t pte)
+{
+ pte_val(pte) |= PTE_CACHEABLE;
+ return pte;
+}
+#endif
+
+/*
+ * Conversion functions: convert a page and protection to a page entry,
+ * and a page entry and page directory to the page they refer to.
+ */
+extern __inline__ pte_t mk_pte(unsigned long page, pgprot_t pgprot)
+{
+ pte_t pte;
+ pte_val(pte) = __virt_to_phys(page) | pgprot_val(pgprot);
+ return pte;
+}
+
+/* This takes a physical page address that is used by the remapping functions */
+extern __inline__ pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
+{
+ pte_t pte;
+ pte_val(pte) = physpage + pgprot_val(pgprot);
+ return pte;
+}
+
+extern __inline__ pte_t pte_modify(pte_t pte, pgprot_t newprot)
+{
+ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
+ return pte;
+}
+
+extern __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
+{
+ *pteptr = pteval;
+ __flush_pte_to_ram(pteptr);
+}
+
+extern __inline__ unsigned long pte_page(pte_t pte)
+{
+ return (unsigned long)phys_to_virt(pte_val(pte) & PAGE_MASK);
+}
+
+extern __inline__ pmd_t mk_user_pmd(pte_t *ptep)
+{
+ pmd_t pmd;
+ pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_USER_TABLE;
+ return pmd;
+}
+
+extern __inline__ pmd_t mk_kernel_pmd(pte_t *ptep)
+{
+ pmd_t pmd;
+ pmd_val(pmd) = __virt_to_phys((unsigned long)ptep) | _PAGE_KERNEL_TABLE;
+ return pmd;
+}
+
+#if 1
+#define set_pmd(pmdp,pmd) processor.u.armv3v4._set_pmd(pmdp,pmd)
+#else
+extern __inline__ void set_pmd(pmd_t *pmdp, pmd_t pmd)
+{
+ *pmdp = pmd;
+ __flush_pte_to_ram(pmdp);
+}
+#endif
+
+extern __inline__ unsigned long pmd_page(pmd_t pmd)
+{
+ return (unsigned long)phys_to_virt(pmd_val(pmd) & 0xfffffc00);
+}
+
+/* to find an entry in a kernel page-table-directory */
+#define pgd_offset_k(address) pgd_offset(&init_mm, address)
+
+/* to find an entry in a page-table-directory */
+extern __inline__ pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
+{
+ return mm->pgd + (address >> PGDIR_SHIFT);
+}
+
+/* Find an entry in the second-level page table.. */
+#define pmd_offset(dir, address) ((pmd_t *)(dir))
+
+/* Find an entry in the third-level page table.. */
+extern __inline__ pte_t * pte_offset(pmd_t * dir, unsigned long address)
+{
+ return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
+}
+
+extern unsigned long get_small_page(int priority);
+extern void free_small_page(unsigned long page);
+
+/*
+ * Allocate and free page tables. The xxx_kernel() versions are
+ * used to allocate a kernel page table - this turns on ASN bits
+ * if any.
+ */
+extern __inline__ void pte_free_kernel(pte_t * pte)
+{
+ free_small_page((unsigned long) pte);
+}
+
+extern const char bad_pmd_string[];
+
+extern __inline__ pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ if (pmd_none(*pmd)) {
+ pte_t *page = (pte_t *) get_small_page(GFP_KERNEL);
+ if (pmd_none(*pmd)) {
+ if (page) {
+ memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);
+ set_pmd(pmd, mk_kernel_pmd(page));
+ return page + address;
+ }
+ set_pmd(pmd, mk_kernel_pmd(BAD_PAGETABLE));
+ return NULL;
+ }
+ free_small_page((unsigned long) page);
+ }
+ if (pmd_bad(*pmd)) {
+ printk(bad_pmd_string, pmd_val(*pmd));
+ set_pmd(pmd, mk_kernel_pmd(BAD_PAGETABLE));
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+#define pmd_free_kernel(pmdp) pmd_val(*(pmdp)) = 0;
+#define pmd_alloc_kernel(pgdp, address) ((pmd_t *)(pgdp))
+
+extern __inline__ void pte_free(pte_t * pte)
+{
+ free_small_page((unsigned long) pte);
+}
+
+extern __inline__ pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
+{
+ address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+
+ if (pmd_none(*pmd)) {
+ pte_t *page = (pte_t *) get_small_page(GFP_KERNEL);
+ if (pmd_none(*pmd)) {
+ if (page) {
+ memzero (page, PTRS_PER_PTE * BYTES_PER_PTR);
+ set_pmd(pmd, mk_user_pmd(page));
+ return page + address;
+ }
+ set_pmd(pmd, mk_user_pmd(BAD_PAGETABLE));
+ return NULL;
+ }
+ free_small_page ((unsigned long) page);
+ }
+ if (pmd_bad(*pmd)) {
+ printk(bad_pmd_string, pmd_val(*pmd));
+ set_pmd(pmd, mk_user_pmd(BAD_PAGETABLE));
+ return NULL;
+ }
+ return (pte_t *) pmd_page(*pmd) + address;
+}
+
+/*
+ * allocating and freeing a pmd is trivial: the 1-entry pmd is
+ * inside the pgd, so has no extra memory associated with it.
+ */
+#define pmd_free(pmdp) pmd_val(*(pmdp)) = 0;
+#define pmd_alloc(pgdp, address) ((pmd_t *)(pgdp))
+
+/*
+ * Free a page directory. Takes the virtual address.
+ */
+extern __inline__ void pgd_free(pgd_t * pgd)
+{
+ free_pages((unsigned long) pgd, 2);
+}
+
+/*
+ * Allocate a new page directory. Return the virtual address of it.
+ */
+extern __inline__ pgd_t * pgd_alloc(void)
+{
+ unsigned long pgd;
+
+ /*
+ * need to get a 16k page for level 1
+ */
+ pgd = __get_free_pages(GFP_KERNEL,2,0);
+ if (pgd)
+ memzero ((void *)pgd, PTRS_PER_PGD * BYTES_PER_PTR);
+ return (pgd_t *)pgd;
+}
+
+extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
+
+/*
+ * The sa110 doesn't have any external MMU info: the kernel page
+ * tables contain all the necessary information.
+ */
+extern __inline__ void update_mmu_cache(struct vm_area_struct * vma,
+ unsigned long address, pte_t pte)
+{
+}
+
+#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
+#define SWP_OFFSET(entry) ((entry) >> 9)
+#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
+
+#endif /* __ASM_PROC_PAGE_H */
+
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen, slshen@lbl.gov