patch-2.2.8 linux/Documentation/arm/nwfpe/TODO

Next file: linux/Documentation/digiboard.txt
Previous file: linux/Documentation/arm/nwfpe/README.FPE
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.2.7/linux/Documentation/arm/nwfpe/TODO linux/Documentation/arm/nwfpe/TODO
@@ -0,0 +1,67 @@
+TODO LIST
+---------
+
+POW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - power
+RPW{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - reverse power
+POL{cond}<S|D|E>{P,M,Z} Fd, Fn, <Fm,#value> - polar angle (arctan2)
+
+LOG{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base 10
+LGN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - logarithm to base e 
+EXP{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - exponent
+SIN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - sine
+COS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - cosine
+TAN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - tangent
+ASN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arcsine
+ACS{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arccosine
+ATN{cond}<S|D|E>{P,M,Z} Fd, <Fm,#value> - arctangent
+
+These are not implemented.  They are not currently issued by the compiler,
+and are handled by routines in libc.  These are not implemented by the FPA11
+hardware, but are handled by the floating point support code.  They should 
+be implemented in future versions.
+
+There are a couple of ways to approach the implementation of these.  One
+method would be to use accurate table methods for these routines.  I have 
+a couple of papers by S. Gal from IBM's research labs in Haifa, Israel that
+seem to promise extreme accuracy (in the order of 99.8%) and reasonable speed.
+These methods are used in GLIBC for some of the transcendental functions.
+
+Another approach, which I know little about is CORDIC.  This stands for
+Coordinate Rotation Digital Computer, and is a method of computing 
+transcendental functions using mostly shifts and adds and a few
+multiplications and divisions.  The ARM excels at shifts and adds,
+so such a method could be promising, but requires more research to 
+determine if it is feasible.
+
+Rounding Methods
+
+The IEEE standard defines 4 rounding modes.  Round to nearest is the
+default, but rounding to + or - infinity or round to zero are also allowed.
+Many architectures allow the rounding mode to be specified by modifying bits
+in a control register.  Not so with the ARM FPA11 architecture.  To change
+the rounding mode one must specify it with each instruction.
+
+This has made porting some benchmarks difficult.  It is possible to
+introduce such a capability into the emulator.  The FPCR contains 
+bits describing the rounding mode.  The emulator could be altered to 
+examine a flag, which if set forced it to ignore the rounding mode in
+the instruction, and use the mode specified in the bits in the FPCR.
+
+This would require a method of getting/setting the flag, and the bits
+in the FPCR.  This requires a kernel call in ArmLinux, as WFC/RFC are
+supervisor only instructions.  If anyone has any ideas or comments I
+would like to hear them.
+
+[NOTE: pulled out from some docs on ARM floating point, specifically
+ for the Acorn FPE, but not limited to it:
+
+ The floating point control register (FPCR) may only be present in some
+ implementations: it is there to control the hardware in an implementation-
+ specific manner, for example to disable the floating point system.  The user
+ mode of the ARM is not permitted to use this register (since the right is
+ reserved to alter it between implementations) and the WFC and RFC
+ instructions will trap if tried in user mode.
+
+ Hence, the answer is yes, you could do this, but then you will run a high
+ risk of becoming isolated if and when hardware FP emulation comes out
+		-- Russell].

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)