patch-2.3.99-pre9 linux/Documentation/DocBook/kernel-hacking.tmpl

Next file: linux/Documentation/DocBook/kernel-locking.tmpl
Previous file: linux/Documentation/DocBook/kernel-api.tmpl
Back to the patch index
Back to the overall index

diff -u --recursive --new-file v2.3.99-pre8/linux/Documentation/DocBook/kernel-hacking.tmpl linux/Documentation/DocBook/kernel-hacking.tmpl
@@ -0,0 +1,1316 @@
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V3.1//EN"[]>
+
+<book id="lk-hacking-guide">
+ <bookinfo>
+  <title>Unreliable Guide To Hacking The Linux Kernel</title>
+  
+  <authorgroup>
+   <author>
+    <firstname>Paul</firstname>
+    <othername>Rusty</othername>
+    <surname>Russell</surname>
+    <affiliation>
+     <address>
+      <email>rusty@linuxcare.com</email>
+     </address>
+    </affiliation>
+   </author>
+  </authorgroup>
+
+  <copyright>
+   <year>2000</year>
+   <holder>Paul Russell</holder>
+  </copyright>
+
+  <legalnotice>
+   <para>
+    This documentation is free software; you can redistribute
+    it and/or modify it under the terms of the GNU General Public
+    License as published by the Free Software Foundation; either
+    version 2 of the License, or (at your option) any later
+    version.
+   </para>
+   
+   <para>
+    This program is distributed in the hope that it will be
+    useful, but WITHOUT ANY WARRANTY; without even the implied
+    warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+    See the GNU General Public License for more details.
+   </para>
+   
+   <para>
+    You should have received a copy of the GNU General Public
+    License along with this program; if not, write to the Free
+    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+    MA 02111-1307 USA
+   </para>
+   
+   <para>
+    For more details see the file COPYING in the source
+    distribution of Linux.
+   </para>
+  </legalnotice>
+
+  <releaseinfo>
+   This is the first release of this document as part of the kernel tarball.
+  </releaseinfo>
+
+ </bookinfo>
+
+ <toc></toc>
+
+ <chapter id="introduction">
+  <title>Introduction</title>
+  <para>
+   Welcome, gentle reader, to Rusty's Unreliable Guide to Linux
+   Kernel Hacking.  This document describes the common routines and
+   general requirements for kernel code: its goal is to serve as a
+   primer for Linux kernel development for experienced C
+   programmers.  I avoid implementation details: that's what the
+   code is for, and I ignore whole tracts of useful routines.
+  </para>
+  <para>
+   Before you read this, please understand that I never wanted to
+   write this document, being grossly under-qualified, but I always
+   wanted to read it, and this was the only way.  I hope it will
+   grow into a compendium of best practice, common starting points
+   and random information.
+  </para>
+ </chapter>
+
+ <chapter id="basic-players">
+  <title>The Players</title>
+
+  <para>
+   At any time each of the CPUs in a system can be:
+  </para>
+
+  <itemizedlist>
+   <listitem>
+    <para>
+     not associated with any process, serving a hardware interrupt;
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     not associated with any process, serving a softirq, tasklet or bh;
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     running in kernel space, associated with a process;
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     running a process in user space.
+    </para>
+   </listitem>
+  </itemizedlist>
+
+  <para>
+   There is a strict ordering between these: other than the last
+   category (userspace) each can only be pre-empted by those above.
+   For example, while a softirq is running on a CPU, no other
+   softirq will pre-empt it, but a hardware interrupt can.  However,
+   any other CPUs in the system execute independently.
+  </para>
+
+  <para>
+   We'll see a number of ways that the user context can block
+   interrupts, to become truly non-preemptable.
+  </para>
+  
+  <sect1 id="basics-usercontext">
+   <title>User Context</title>
+
+   <para>
+    User context is when you are coming in from a system call or
+    other trap: you can sleep, and you own the CPU (except for
+    interrupts) until you call <function>schedule()</function>.  
+    In other words, user context (unlike userspace) is not pre-emptable.
+   </para>
+
+   <note>
+    <para>
+     You are always in user context on module load and unload,
+     and on operations on the block device layer.
+    </para>
+   </note>
+
+   <para>
+    In user context, the <varname>current</varname> pointer (indicating 
+    the task we are currently executing) is valid, and
+    <function>in_interrupt()</function>
+    (<filename>include/asm/hardirq.h</filename>) is <returnvalue>false
+    </returnvalue>.  
+   </para>
+
+   <caution>
+    <para>
+     Beware that if you have interrupts or bottom halves disabled 
+     (see below), <function>in_interrupt()</function> will return a 
+     false positive.
+    </para>
+   </caution>
+  </sect1>
+
+  <sect1 id="basics-hardirqs">
+   <title>Hardware Interrupts (Hard IRQs)</title>
+
+   <para>
+    Timer ticks, <hardware>network cards</hardware> and 
+    <hardware>keyboard</hardware> are examples of real
+    hardware which produce interrupts at any time.  The kernel runs
+    interrupt handlers, which services the hardware.  The kernel
+    guarantees that this handler is never re-entered: if another
+    interrupt arrives, it is queued (or dropped).  Because it
+    disables interrupts, this handler has to be fast: frequently it
+    simply acknowledges the interrupt, marks a `software interrupt'
+    for execution and exits.
+   </para>
+
+   <para>
+    You can tell you are in a hardware interrupt, because 
+    <function>in_irq()</function> returns <returnvalue>true</returnvalue>.  
+   </para>
+   <caution>
+    <para>
+     Beware that this will return a false positive if interrupts are disabled 
+     (see below).
+    </para>
+   </caution>
+  </sect1>
+
+  <sect1 id="basics-softirqs">
+   <title>Software Interrupt Context: Bottom Halves, Tasklets, softirqs</title>
+
+   <para>
+    Whenever a system call is about to return to userspace, or a
+    hardware interrupt handler exits, any `software interrupts'
+    which are marked pending (usually by hardware interrupts) are
+    run (<filename>kernel/softirq.c</filename>).
+   </para>
+
+   <para>
+    Much of the real interrupt handling work is done here.  Early in
+    the transition to <acronym>SMP</acronym>, there were only `bottom 
+    halves' (BHs), which didn't take advantage of multiple CPUs.  Shortly 
+    after we switched from wind-up computers made of match-sticks and snot,
+    we abandoned this limitation.
+   </para>
+
+   <para>
+    <filename class=headerfile>include/linux/interrupt.h</filename> lists the 
+    different BH's.  No matter how many CPUs you have, no two BHs will run at 
+    the same time. This made the transition to SMP simpler, but sucks hard for
+    scalable performance.  A very important bottom half is the timer
+    BH (<filename class=headerfile>include/linux/timer.h</filename>): you 
+    can register to have it call functions for you in a given length of time.
+   </para>
+
+   <para>
+    2.3.43 introduced softirqs, and re-implemented the (now
+    deprecated) BHs underneath them.  Softirqs are fully-SMP
+    versions of BHs: they can run on as many CPUs at once as
+    required.  This means they need to deal with any races in shared
+    data using their own locks.  A bitmask is used to keep track of
+    which are enabled, so the 32 available softirqs should not be
+    used up lightly.  (<emphasis>Yes</emphasis>, people will
+    notice).
+   </para>
+
+   <para>
+    tasklets (<filename class=headerfile>include/linux/interrupt.h</filename>) 
+    are like softirqs, except they are dynamically-registrable (meaning you 
+    can have as many as you want), and they also guarantee that any tasklet 
+    will only run on one CPU at any time, although different tasklets can 
+    run simultaneously (unlike different BHs).  
+   </para>
+   <caution>
+    <para>
+     The name `tasklet' is misleading: they have nothing to do with `tasks', 
+     and probably more to do with some bad vodka Alexey Kuznetsov had at the 
+     time.
+    </para>
+   </caution>
+
+   <para>
+    You can tell you are in a softirq (or bottom half, or tasklet)
+    using the <function>in_softirq()</function> macro 
+    (<filename class=headerfile>include/asm/softirq.h</filename>).  
+   </para>
+   <caution>
+    <para>
+     Beware that this will return a false positive if a bh lock (see below)
+     is held.
+    </para>
+   </caution>
+  </sect1>
+ </chapter>
+
+ <chapter id="basic-rules">
+  <title>Some Basic Rules</title>
+
+  <variablelist>
+   <varlistentry>
+    <term>No memory protection</term>
+    <listitem>
+     <para>
+      If you corrupt memory, whether in user context or
+      interrupt context, the whole machine will crash.  Are you
+      sure you can't do what you want in userspace?
+     </para>
+    </listitem>
+   </varlistentry>
+
+   <varlistentry>
+    <term>No floating point or <acronym>MMX</acronym></term>
+    <listitem>
+     <para>
+      The <acronym>FPU</acronym> context is not saved; even in user
+      context the <acronym>FPU</acronym> state probably won't
+      correspond with the current process: you would mess with some
+      user process' <acronym>FPU</acronym> state.  If you really want
+      to do this, you would have to explicitly save/restore the full
+      <acronym>FPU</acronym> state (and avoid context switches).  It
+      is generally a bad idea; use fixed point arithmetic first.
+     </para>
+    </listitem>
+   </varlistentry>
+
+   <varlistentry>
+    <term>A rigid stack limit</term>
+    <listitem>
+     <para>
+      The kernel stack is about 6K in 2.2 (for most
+      architectures: it's about 14K on the Alpha), and shared
+      with interrupts so you can't use it all.  Avoid deep
+      recursion and huge local arrays on the stack (allocate
+      them dynamically instead).
+     </para>
+    </listitem>
+   </varlistentry>
+
+   <varlistentry>
+    <term>The Linux kernel is portable</term>
+    <listitem>
+     <para>
+      Let's keep it that way.  Your code should be 64-bit clean,
+      and endian-independent.  You should also minimize CPU
+      specific stuff, e.g. inline assembly should be cleanly
+      encapsulated and minimized to ease porting.  Generally it
+      should be restricted to the architecture-dependent part of
+      the kernel tree.
+     </para>
+    </listitem>
+   </varlistentry>
+  </variablelist>
+ </chapter>
+
+ <chapter id="ioctls">
+  <title>ioctls: Not writing a new system call</title>
+
+  <para>
+   A system call generally looks like this
+  </para>
+
+  <programlisting>
+asmlinkage int sys_mycall(int arg) 
+{
+        return 0; 
+}
+  </programlisting>
+
+  <para>
+   First, in most cases you don't want to create a new system call.
+   You create a character device and implement an appropriate ioctl
+   for it.  This is much more flexible than system calls, doesn't have
+   to be entered in every architecture's
+   <filename class=headerfile>include/asm/unistd.h</filename> and
+   <filename>arch/kernel/entry.S</filename> file, and is much more
+   likely to be accepted by Linus.
+  </para>
+
+  <para>
+   Inside the ioctl you're in user context to a process.  When a
+   error occurs you return a negated errno (see
+   <filename class=headerfile>include/linux/errno.h</filename>),
+   otherwise you return <returnvalue>0</returnvalue>.
+  </para>
+
+  <para>
+   After you slept you should check if a signal occurred: the
+   Unix/Linux way of handling signals is to temporarily exit the
+   system call with the <constant>-ERESTARTSYS</constant> error.  The
+   system call entry code will switch back to user context, process
+   the signal handler and then your system call will be restarted
+   (unless the user disabled that).  So you should be prepared to
+   process the restart, e.g. if you're in the middle of manipulating
+   some data structure.
+  </para>
+
+  <programlisting>
+if (signal_pending()) 
+        return -ERESTARTSYS;
+  </programlisting>
+
+  <para>
+   If you're doing longer computations: first think userspace. If you
+   <emphasis>really</emphasis> want to do it in kernel you should
+   regularly check if you need to give up the CPU (remember there is
+   cooperative multitasking per CPU).  Idiom:
+  </para>
+
+  <programlisting>
+if (current-&gt;need_resched)
+        schedule(); /* Will sleep */ 
+  </programlisting>
+
+  <para>
+   A short note on interface design: the UNIX system call motto is
+   "Provide mechanism not policy".
+  </para>
+ </chapter>
+
+ <chapter id="deadlock-recipes">
+  <title>Recipes for Deadlock</title>
+
+  <para>
+   You cannot call any routines which may sleep, unless:
+  </para>
+  <itemizedlist>
+   <listitem>
+    <para>
+     You are in user context.
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     You do not own any spinlocks.
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     You have interrupts enabled (actually, Andi Kleen says
+     that the scheduling code will enable them for you, but
+     that's probably not what you wanted).
+    </para>
+   </listitem>
+  </itemizedlist>
+
+  <para>
+   Note that some functions may sleep implicitly: common ones are
+   the user space access functions (*_user) and memory allocation
+   functions without GFP_ATOMIC.
+  </para>
+
+  <para>
+   You will eventually lock up your box if you break these rules.  
+  </para>
+
+  <para>
+   Really.
+  </para>
+ </chapter>
+
+ <chapter id="common-routines">
+  <title>Common Routines</title>
+
+  <sect1 id="routines-printk">
+   <title>
+    <function>printk()</function>
+    <filename class=headerfile>include/linux/kernel.h</filename>
+   </title>
+
+   <para>
+    <function>printk()</function> feeds kernel messages to the
+    console, dmesg, and the syslog daemon.  It is useful for debugging
+    and reporting errors, and can be used inside interrupt context,
+    but use with caution: a machine which has its console flooded with
+    printk messages is unusable.  It uses a format string mostly
+    compatible with ANSI C printf, and C string concatenation to give
+    it a first "priority" argument:
+   </para>
+
+   <programlisting>
+printk(KERN_INFO "i = %u\n", i);
+   </programlisting>
+
+   <para>
+    See <filename class=headerfile>include/linux/kernel.h</filename>;
+    for other KERN_ values; these are interpreted by syslog as the
+    level.  Special case: for printing an IP address use
+   </para>
+
+   <programlisting>
+__u32 ipaddress;
+printk(KERN_INFO "my ip: %d.%d.%d.%d\n", NIPQUAD(ipaddress));
+   </programlisting>
+
+   <para>
+    <function>printk()</function> internally uses a 1K buffer and does
+    not catch overruns.  Make sure that will be enough.
+   </para>
+
+   <note>
+    <para>
+     You will know when you are a real kernel hacker
+     when you start typoing printf as printk in your user programs :)
+    </para>
+   </note>
+
+   <!--- From the Lions book reader department --> 
+
+   <note>
+    <para>
+     Another sidenote: the original Unix Version 6 sources had a
+     comment on top of its printf function: "Printf should not be
+     used for chit-chat".  You should follow that advice.
+    </para>
+   </note>
+  </sect1>
+
+  <sect1 id="routines-copy">
+   <title>
+    <function>copy_[to/from]_user()</function>
+    /
+    <function>get_user()</function>
+    /
+    <function>put_user()</function>
+    <filename class=headerfile>include/asm/uaccess.h</filename>
+   </title>  
+
+   <para>
+    <emphasis>[SLEEPS]</emphasis>
+   </para>
+
+   <para>
+    <function>put_user()</function> and <function>get_user()</function>
+    are used to get and put single values (such as an int, char, or
+    long) from and to userspace.  A pointer into userspace should
+    never be simply dereferenced: data should be copied using these
+    routines.  Both return <constant>-EFAULT</constant> or 0.
+   </para>
+   <para>
+    <function>copy_to_user()</function> and
+    <function>copy_from_user()</function> are more general: they copy
+    an arbitrary amount of data to and from userspace.
+    <caution>
+     <para>
+      Unlike <function>put_user()</function> and
+      <function>get_user()</function>, they return the amount of
+      uncopied data (ie. <returnvalue>0</returnvalue> still means
+      success).
+     </para>
+    </caution>
+    [Yes, this moronic interface makes me cringe.  Please submit a
+    patch and become my hero --RR.]
+   </para>
+   <para>
+    The functions may sleep implicitly. This should never be called
+    outside user context (it makes no sense), with interrupts
+    disabled, or a spinlock held.
+   </para>
+  </sect1>
+
+  <sect1 id="routines-kmalloc">
+   <title><function>kmalloc()</function>/<function>kfree()</function>
+    <filename class=headerfile>include/linux/slab.h</filename></title>
+
+   <para>
+    <emphasis>[MAY SLEEP: SEE BELOW]</emphasis>
+   </para>
+
+   <para>
+    These routines are used to dynamically request pointer-aligned
+    chunks of memory, like malloc and free do in userspace, but
+    <function>kmalloc()</function> takes an extra flag word.
+    Important values:
+   </para>
+
+   <variablelist>
+    <varlistentry>
+     <term>
+      <constant>
+       GFP_KERNEL
+      </constant>
+     </term>
+     <listitem>
+      <para>
+       May sleep and swap to free memory. Only allowed in user
+       context, but is the most reliable way to allocate memory.
+      </para>
+     </listitem>
+    </varlistentry>
+    
+    <varlistentry>
+     <term>
+      <constant>
+       GFP_ATOMIC
+      </constant>
+     </term>
+     <listitem>
+      <para>
+       Don't sleep. Less reliable than <constant>GFP_KERNEL</constant>,
+       but may be called from interrupt context. You should
+       <emphasis>really</emphasis> have a good out-of-memory
+       error-handling strategy.
+      </para>
+     </listitem>
+    </varlistentry>
+    
+    <varlistentry>
+     <term>
+      <constant>
+       GFP_DMA
+      </constant>
+     </term>
+     <listitem>
+      <para>
+       Allocate ISA DMA lower than 16MB. If you don't know what that
+       is you don't need it.  Very unreliable.
+      </para>
+     </listitem>
+    </varlistentry>
+   </variablelist>
+
+   <para>
+    If you see a <errorname>kmem_grow: Called nonatomically from int
+    </errorname> warning message you called a memory allocation function
+    from interrupt context without <constant>GFP_ATOMIC</constant>.
+    You should really fix that.  Run, don't walk.
+   </para>
+
+   <para>
+    If you are allocating at least <constant>PAGE_SIZE</constant>
+    (<filename class=headerfile>include/asm/page.h</filename>) bytes,
+    consider using <function>__get_free_pages()</function>
+
+    (<filename class=headerfile>include/linux/mm.h</filename>).  It
+    takes an order argument (0 for page sized, 1 for double page, 2
+    for four pages etc.) and the same memory priority flag word as
+    above.
+   </para>
+
+   <para>
+    If you are allocating more than a page worth of bytes you can use
+    <function>vmalloc()</function>.  It'll allocate virtual memory in
+    the kernel map.  This block is not contiguous in physical memory,
+    but the <acronym>MMU</acronym> makes it look like it is for you
+    (so it'll only look contiguous to the CPUs, not to external device
+    drivers).  If you really need large physically contiguous memory
+    for some weird device, you have a problem: it is poorly supported
+    in Linux because after some time memory fragmentation in a running
+    kernel makes it hard.  The best way is to allocate the block early
+    in the boot process.
+   </para>
+
+   <para>
+    Before inventing your own cache of often-used objects consider
+    using a slab cache in
+    <filename class=headerfile>include/linux/slab.h</filename>
+   </para>
+  </sect1>
+
+  <sect1 id="routines-current">
+   <title><function>current</function>
+    <filename class=headerfile>include/asm/current.h</filename></title>
+
+   <para>
+    This global variable (really a macro) contains a pointer to
+    the current task structure, so is only valid in user context.
+    For example, when a process makes a system call, this will
+    point to the task structure of the calling process.  It is
+    <emphasis>not NULL</emphasis> in interrupt context.
+   </para>
+  </sect1>
+
+  <sect1 id="routines-local-irqs">
+   <title><function>local_irq_save()</function>/<function>local_irq_restore()</function>
+    <filename class=headerfile>include/asm/system.h</filename>
+   </title>
+
+   <para>
+    These routines disable hard interrupts on the local CPU, and
+    restore them.  They are reentrant; saving the previous state in
+    their one <varname>unsigned long flags</varname> argument.  If you
+    know that interrupts are enabled, you can simply use
+    <function>local_irq_disable()</function> and
+    <function>local_irq_enable()</function>.
+   </para>
+  </sect1>
+
+  <sect1 id="routines-softirqs">
+   <title><function>local_bh_disable()</function>/<function>local_bh_enable()</function>
+    <filename class=headerfile>include/asm/softirq.h</filename></title>
+
+   <para>
+    These routines disable soft interrupts on the local CPU, and
+    restore them.  They are reentrant; if soft interrupts were
+    disabled before, they will still be disabled after this pair
+    of functions has been called.  They prevent softirqs, tasklets
+    and bottom halves from running on the current CPU.
+   </para>
+  </sect1>
+
+  <sect1 id="routines-processorids">
+   <title><function>smp_processor_id</function>()/<function>cpu_[number/logical]_map()</function>
+    <filename class=headerfile>include/asm/smp.h</filename></title>
+   
+   <para>
+    <function>smp_processor_id()</function> returns the current
+    processor number, between 0 and <symbol>NR_CPUS</symbol> (the
+    maximum number of CPUs supported by Linux, currently 32).  These
+    values are not necessarily continuous: to get a number between 0
+    and <function>smp_num_cpus()</function> (the number of actual
+    processors in this machine), the
+    <function>cpu_number_map()</function> function is used to map the
+    processor id to a logical number.
+    <function>cpu_logical_map()</function> does the reverse.
+   </para>
+  </sect1>
+
+  <sect1 id="routines-init">
+   <title><type>__init</type>/<type>__exit</type>/<type>__initdata</type>
+    <filename class=headerfile>include/linux/init.h</filename></title>
+
+   <para>
+    After boot, the kernel frees up a special section; functions
+    marked with <type>__init</type> and data structures marked with
+    <type>__initdata</type> are dropped after boot is complete (within
+    modules this directive is currently ignored).  <type>__exit</type>
+    is used to declare a function which is only required on exit: the
+    function will be dropped if this file is not compiled as a module.
+    See the header file for use.
+   </para>
+
+  </sect1>
+
+  <sect1 id="routines-init-again">
+   <title><function>__initcall()</function>/<function>module_init()</function>
+    <filename class=headerfile>include/linux/init.h</filename></title>
+   <para>
+    Many parts of the kernel are well served as a module
+    (dynamically-loadable parts of the kernel).  Using the
+    <function>module_init()</function> and
+    <function>module_exit()</function> macros it is easy to write code
+    without #ifdefs which can operate both as a module or built into
+    the kernel.
+   </para>
+
+   <para>
+    The <function>module_init()</function> macro defines which
+    function is to be called at module insertion time (if the file is
+    compiled as a module), or at boot time: if the file is not
+    compiled as a module the <function>module_init()</function> macro
+    becomes equivalent to <function>__initcall()</function>, which
+    through linker magic ensures that the function is called on boot.
+   </para>
+
+   <para>
+    The function can return a negative error number to cause
+    module loading to fail (unfortunately, this has no effect if
+    the module is compiled into the kernel).  For modules, this is
+    called in user context, with interrupts enabled, and the
+    kernel lock held, so it can sleep.
+   </para>
+  </sect1>
+  
+  <sect1 id="routines-moduleexit">
+   <title> <function>module_exit()</function>
+    <filename class=headerfile>include/linux/init.h</filename> </title>
+
+   <para>
+    This macro defines the function to be called at module removal
+    time (or never, in the case of the file compiled into the
+    kernel).  It will only be called if the module usage count has
+    reached zero.  This function can also sleep, but cannot fail:
+    everything must be cleaned up by the time it returns.
+   </para>
+  </sect1>
+
+  <sect1 id="routines-module-use-counters">
+   <title> <function>MOD_INC_USE_COUNT</function>/<function>MOD_DEC_USE_COUNT</function>
+    <filename class=headerfile>include/linux/module.h</filename></title>
+
+   <para>
+    These manipulate the module usage count, to protect against
+    removal (a module also can't be removed if another module uses
+    one of its exported symbols: see below).  Every reference to
+    the module from user context should be reflected by this
+    counter (e.g. for every data structure or socket) before the
+    function sleeps.  To quote Tim Waugh:
+   </para>
+
+   <programlisting>
+/* THIS IS BAD */
+foo_open (...)
+{
+        stuff..
+        if (fail)
+                return -EBUSY;
+        sleep.. (might get unloaded here)
+        stuff..
+        MOD_INC_USE_COUNT;
+        return 0;
+}
+
+/* THIS IS GOOD /
+foo_open (...)
+{
+        MOD_INC_USE_COUNT;
+        stuff..
+        if (fail) {
+                MOD_DEC_USE_COUNT;
+                return -EBUSY;
+        }
+        sleep.. (safe now)
+        stuff..
+        return 0;
+}
+   </programlisting>
+  </sect1>
+ </chapter>
+
+ <chapter id="queues">
+  <title>Wait Queues
+   <filename class=headerfile>include/linux/wait.h</filename>
+  </title>
+  <para>
+   <emphasis>[SLEEPS]</emphasis>
+  </para>
+
+  <para>
+   A wait queue is used to wait for someone to wake you up when a
+   certain condition is true.  They must be used carefully to ensure
+   there is no race condition.  You declare a
+   <type>wait_queue_head_t</type>, and then processes which want to
+   wait for that condition declare a <type>wait_queue_t</type>
+   referring to themselves, and place that in the queue.
+  </para>
+
+  <sect1 id="queue-declaring">
+   <title>Declaring</title>
+   
+   <para>
+    You declare a <type>wait_queue_head_t</type> using the
+    <function>DECLARE_WAIT_QUEUE_HEAD()</function> macro, or using the
+    <function>init_waitqueue_head()</function> routine in your
+    initialization code.
+   </para>
+  </sect1>
+  
+  <sect1 id="queue-waitqueue">
+   <title>Queuing</title>
+   
+   <para>
+    Placing yourself in the waitqueue is fairly complex, because you
+    must put yourself in the queue before checking the condition.
+    There is a macro to do this:
+    <function>wait_event_interruptible()</function>
+
+    <filename class=headerfile>include/linux/sched.h</filename> The
+    first argument is the wait queue head, and the second is an
+    expression which is evaluated; the macro returns
+    <returnvalue>0</returnvalue> when this expression is true, or
+    <returnvalue>-ERESTARTSYS</returnvalue> if a signal is received.
+    The <function>wait_event()</function> version ignores signals.
+   </para>
+  </sect1>
+
+  <sect1 id="queue-waking">
+   <title>Waking Up Queued Tasks</title>
+   
+   <para>
+    Call <function>wake_up()</function>
+
+    <filename class=headerfile>include/linux/sched.h</filename>;,
+    which will wake up every process in the queue.  The exception is
+    if one has <constant>TASK_EXCLUSIVE</constant> set, in which case
+    the remainder of the queue will not be woken.
+   </para>
+  </sect1>
+ </chapter>
+
+ <chapter id="atomic-ops">
+  <title>Atomic Operations</title>
+
+  <para>
+   Certain operations are guaranteed atomic on all platforms.  The
+   first class of operations work on <type>atomic_t</type>
+
+   <filename class=headerfile>include/asm/atomic.h</filename>; this
+   contains a signed integer (at least 32 bits long), and you must use
+   these functions to manipulate or read atomic_t variables.
+   <function>atomic_read()</function> and
+   <function>atomic_set()</function> get and set the counter,
+   <function>atomic_add()</function>,
+   <function>atomic_sub()</function>,
+   <function>atomic_inc()</function>,
+   <function>atomic_dec()</function>, and
+   <function>atomic_dec_and_test()</function> (returns
+   <returnvalue>true</returnvalue> if it was decremented to zero).
+  </para>
+
+  <para>
+   Yes.  It returns <returnvalue>true</returnvalue> (i.e. != 0) if the
+   atomic variable is zero.
+  </para>
+
+  <para>
+   Note that these functions are slower than normal arithmetic, and
+   so should not be used unnecessarily.  On some platforms they
+   are much slower, like 32-bit Sparc where they use a spinlock.
+  </para>
+
+  <para>
+   The second class of atomic operations is atomic bit operations,
+   defined in
+
+   <filename class=headerfile>include/asm/bitops.h</filename>.  These
+   operations generally take a pointer to the bit pattern, and a bit
+   number: 0 is the least significant bit.
+   <function>set_bit()</function>, <function>clear_bit()</function>
+   and <function>change_bit()</function> set, clear, and flip the
+   given bit.  <function>test_and_set_bit()</function>,
+   <function>test_and_clear_bit()</function> and
+   <function>test_and_change_bit()</function> do the same thing,
+   except return true if the bit was previously set; these are
+   particularly useful for very simple locking.
+  </para>
+  
+  <para>
+   It is possible to call these operations with bit indices greater
+   than 31.  The resulting behavior is strange on big-endian
+   platforms though so it is a good idea not to do this.
+  </para>
+ </chapter>
+
+ <chapter id="symbols">
+  <title>Symbols</title>
+
+  <para>
+   Within the kernel proper, the normal linking rules apply
+   (ie. unless a symbol is declared to be file scope with the
+   <type>static</type> keyword, it can be used anywhere in the
+   kernel).  However, for modules, a special exported symbol table is
+   kept which limits the entry points to the kernel proper.  Modules
+   can also export symbols.
+  </para>
+
+  <sect1 id="sym-exportsymbols">
+   <title><function>EXPORT_SYMBOL()</function>
+    <filename class=headerfile>include/linux/module.h</filename></title>
+
+   <para>
+    This is the classic method of exporting a symbol, and it works
+    for both modules and non-modules.  In the kernel all these
+    declarations are often bundled into a single file to help
+    genksyms (which searches source files for these declarations).
+    See the comment on genksyms and Makefiles below.
+   </para>
+  </sect1>
+
+  <sect1 id="sym-exportsymtab">
+   <title><function>EXPORT_SYMTAB</function></title>
+
+   <para>
+    For convenience, a module usually exports all non-file-scope
+    symbols (ie. all those not declared <type>static</type>).  If this
+    is defined before
+
+    <filename class=headerfile>include/linux/module.h</filename> is
+    included, then only symbols explicit exported with
+    <function>EXPORT_SYMBOL()</function> will be exported.
+   </para>
+  </sect1>
+ </chapter>
+
+ <chapter id="conventions">
+  <title>Routines and Conventions</title>
+
+  <sect1 id="conventions-doublelinkedlist">
+   <title>Double-linked lists
+    <filename class=headerfile>include/linux/list.h</filename></title>
+
+   <para>
+    There are three sets of linked-list routines in the kernel
+    headers, but this one seems to be winning out (and Linus has
+    used it).  If you don't have some particular pressing need for
+    a single list, it's a good choice.  In fact, I don't care
+    whether it's a good choice or not, just use it so we can get
+    rid of the others.
+   </para>
+  </sect1>
+
+  <sect1 id="convention-returns">
+   <title>Return Conventions</title>
+
+   <para>
+    For code called in user context, it's very common to defy C
+    convention, and return <returnvalue>0</returnvalue> for success,
+    and a negative error number
+    (eg. <returnvalue>-EFAULT</returnvalue>) for failure.  This can be
+    unintuitive at first, but it's fairly widespread in the networking
+    code, for example.
+   </para>
+
+   <para>
+    The filesystem code uses <function>ERR_PTR()</function>
+
+    <filename class=headerfile>include/linux/fs.h</filename>; to
+    encode a negative error number into a pointer, and
+    <function>IS_ERR()</function> and <function>PTR_ERR()</function>
+    to get it back out again: avoids a separate pointer parameter for
+    the error number.  Icky, but in a good way.
+   </para>
+  </sect1>
+
+  <sect1 id="conventions-borkedcompile">
+   <title>Breaking Compilation</title>
+
+   <para>
+    Linus and the other developers sometimes change function or
+    structure names in development kernels; this is not done just to
+    keep everyone on their toes: it reflects a fundamental change
+    (eg. can no longer be called with interrupts on, or does extra
+    checks, or doesn't do checks which were caught before).  Usually
+    this is accompanied by a fairly complete note to the linux-kernel
+    mailing list; search the archive.  Simply doing a global replace
+    on the file usually makes things <emphasis>worse</emphasis>.
+   </para>
+  </sect1>
+
+  <sect1 id="conventions-initialising">
+   <title>Initializing structure members</title>
+
+   <para>
+    The preferred method of initializing structures is to use the
+    gcc Labeled Elements extension, eg:
+   </para>
+   <programlisting>
+static struct block_device_operations opt_fops = {
+        open:                   opt_open,
+        release:                opt_release,
+        ioctl:                  opt_ioctl,
+        check_media_change:     opt_media_change,
+};
+   </programlisting>
+
+   <para>
+    This makes it easy to grep for, and makes it clear which
+    structure fields are set.  You should do this because it looks
+    cool.
+   </para>
+  </sect1>
+
+  <sect1 id="conventions-gnu-extns">
+   <title>GNU Extensions</title>
+
+   <para>
+    GNU Extensions are explicitly allowed in the Linux kernel.
+    Note that some of the more complex ones are not very well
+    supported, due to lack of general use, but the following are
+    considered standard (see the GCC info page section "C
+    Extensions" for more details - Yes, really the info page, the
+    man page is only a short summary of the stuff in info):
+   </para>
+   <itemizedlist>
+    <listitem>
+     <para>
+      Inline functions
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Statement expressions (ie. the ({ and }) constructs).
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Declaring attributes of a function / variable / type
+      (__attribute__)
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Labeled elements
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      typeof
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Zero length arrays
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Macro varargs
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Arithmetic on void pointers
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Non-Constant initializers
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Assembler Instructions (not outside arch/ and include/asm/)
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      Function names as strings (__FUNCTION__)
+     </para>
+    </listitem>
+    <listitem>
+     <para>
+      __builtin_constant_p()
+     </para>
+    </listitem>
+   </itemizedlist>
+
+   <para>
+    Be wary when using long long in the kernel, the code gcc generates for
+    it is horrible and worse: division and multiplication does not work
+    on i386 because the GCC runtime functions for it are missing from
+    the kernel environment.
+   </para>
+
+    <!-- FIXME: add a note about ANSI aliasing cleanness -->
+  </sect1>
+
+  <sect1 id="conventions-cplusplus">
+   <title>C++</title>
+   
+   <para>
+    Using C++ in the kernel is usually a bad idea, because the
+    kernel does not provide the necessary runtime environment
+    and the include files are not tested for it.  It is still
+    possible, but not recommended.  If you really want to do
+    this, forget about exceptions at least.
+   </para>
+  </sect1>
+
+  <sect1 id="conventions-ifdef">
+   <title>&num;if</title>
+   
+   <para>
+    It is generally considered cleaner to use macros in header files
+    (or at the top of .c files) to abstract away functions rather than
+    using `#if' pre-processor statements throughout the source code.
+   </para>
+  </sect1>
+ </chapter>
+
+ <chapter id="submitting">
+  <title>Putting Your Stuff in the Kernel</title>
+
+  <para>
+   In order to get your stuff into shape for official inclusion, or
+   even to make a neat patch, there's administrative work to be
+   done:
+  </para>
+  <itemizedlist>
+   <listitem>
+    <para>
+     Figure out whose pond you've been pissing in.  Look at the top of
+     the source files, inside the <filename>MAINTAINERS</filename>
+     file, and last of all in the <filename>CREDITS</filename> file.
+     You should coordinate with this person to make sure you're not
+     duplicating effort, or trying something that's already been
+     rejected.
+    </para>
+
+    <para>
+     Make sure you put your name and EMail address at the top of
+     any files you create or mangle significantly.  This is the
+     first place people will look when they find a bug, or when
+     <emphasis>they</emphasis> want to make a change.
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     Usually you want a configuration option for your kernel hack.
+     Edit <filename>Config.in</filename> in the appropriate directory
+     (but under <filename>arch/</filename> it's called
+     <filename>config.in</filename>).  The Config Language used is not
+     bash, even though it looks like bash; the safe way is to use only
+     the constructs that you already see in
+     <filename>Config.in</filename> files (see
+     <filename>Documentation/kbuild/config-language.txt</filename>).
+     It's good to run "make xconfig" at least once to test (because
+     it's the only one with a static parser).
+    </para>
+
+    <para>
+     Variables which can be Y or N use <type>bool</type> followed by a
+     tagline and the config define name (which must start with
+     CONFIG_).  The <type>tristate</type> function is the same, but
+     allows the answer M (which defines
+     <symbol>CONFIG_foo_MODULE</symbol> in your source, instead of
+     <symbol>CONFIG_FOO</symbol>) if <symbol>CONFIG_MODULES</symbol>
+     is enabled.
+    </para>
+
+    <para>
+     You may well want to make your CONFIG option only visible if
+     <symbol>CONFIG_EXPERIMENTAL</symbol> is enabled: this serves as a
+     warning to users.  There many other fancy things you can do: see
+     the the various <filename>Config.in</filename> files for ideas.
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     Edit the <filename>Makefile</filename>: the CONFIG variables are
+     exported here so you can conditionalize compilation with `ifeq'.
+     If your file exports symbols then add the names to
+     <varname>MX_OBJS</varname> or <varname>OX_OBJS</varname> instead
+     of <varname>M_OBJS</varname> or <varname>O_OBJS</varname>, so
+     that genksyms will find them.
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     Document your option in Documentation/Configure.help.  Mention
+     incompatibilities and issues here.  <emphasis> Definitely
+     </emphasis> end your description with <quote> if in doubt, say N
+     </quote> (or, occasionally, `Y'); this is for people who have no
+     idea what you are talking about.
+    </para>
+   </listitem>
+
+   <listitem>
+    <para>
+     Put yourself in <filename>CREDITS</filename> if you've done
+     something noteworthy, usually beyond a single file (your name
+     should be at the top of the source files anyway).
+     <filename>MAINTAINERS</filename> means you want to be consulted
+     when changes are made to a subsystem, and hear about bugs; it
+     implies a more-than-passing commitment to some part of the code.
+    </para>
+   </listitem>
+  </itemizedlist>
+ </chapter>
+
+ <chapter id="cantrips">
+  <title>Kernel Cantrips</title>
+
+  <para>
+   Some favorites from browsing the source.  Feel free to add to this
+   list.
+  </para>
+
+  <para>
+   <filename>include/linux/brlock.h:</filename>
+  </para>
+  <programlisting>
+extern inline void br_read_lock (enum brlock_indices idx)
+{
+        /*
+         * This causes a link-time bug message if an
+         * invalid index is used:
+         */
+        if (idx >= __BR_END)
+                __br_lock_usage_bug();
+
+        read_lock(&amp;__brlock_array[smp_processor_id()][idx]);
+}
+  </programlisting>
+
+  <para>
+   <filename>include/linux/fs.h</filename>:
+  </para>
+  <programlisting>
+/*
+ * Kernel pointers have redundant information, so we can use a
+ * scheme where we can return either an error code or a dentry
+ * pointer with the same return value.
+ *
+ * This should be a per-architecture thing, to allow different
+ * error and pointer decisions.
+ */
+ #define ERR_PTR(err)    ((void *)((long)(err)))
+ #define PTR_ERR(ptr)    ((long)(ptr))
+ #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))
+</programlisting>
+
+  <para>
+   <filename>include/asm-i386/uaccess.h:</filename>
+  </para>
+
+  <programlisting>
+#define copy_to_user(to,from,n)                         \
+        (__builtin_constant_p(n) ?                      \
+         __constant_copy_to_user((to),(from),(n)) :     \
+         __generic_copy_to_user((to),(from),(n)))
+  </programlisting>
+
+  <para>
+   <filename>arch/sparc/kernel/head.S:</filename>
+  </para>
+
+  <programlisting>
+/*
+ * Sun people can't spell worth damn. "compatability" indeed.
+ * At least we *know* we can't spell, and use a spell-checker.
+ */
+
+/* Uh, actually Linus it is I who cannot spell. Too much murky
+ * Sparc assembly will do this to ya.
+ */
+C_LABEL(cputypvar):
+        .asciz "compatability"
+
+/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
+        .align 4
+C_LABEL(cputypvar_sun4m):
+        .asciz "compatible"
+  </programlisting>
+
+  <para>
+   <filename>arch/sparc/lib/checksum.S:</filename>
+  </para>
+
+  <programlisting>
+        /* Sun, you just can't beat me, you just can't.  Stop trying,
+         * give up.  I'm serious, I am going to kick the living shit
+         * out of you, game over, lights out.
+         */
+  </programlisting>
+ </chapter>
+
+ <chapter id="credits">
+  <title>Thanks</title>
+
+  <para>
+   Thanks to Andi Kleen for the idea, answering my questions, fixing
+   my mistakes, filling content, etc.  Philipp Rumpf for more spelling
+   and clarity fixes, and some excellent non-obvious points.  Werner
+   Almesberger for giving me a great summary of
+   <function>disable_irq()</function>, and Jes Sorensen and Andrea
+   Arcangeli added caveats. Michael Elizabeth Chastain for checking
+   and adding to the Configure section. <!-- Rusty insisted on this
+   bit; I didn't do it! --> Telsa Gwynne for teaching me DocBook. 
+  </para>
+ </chapter>
+</book>
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)