patch-2.4.19 linux-2.4.19/arch/ppc64/kernel/iSeries_setup.c
Next file: linux-2.4.19/arch/ppc64/kernel/iSeries_setup.h
Previous file: linux-2.4.19/arch/ppc64/kernel/iSeries_proc.c
Back to the patch index
Back to the overall index
- Lines: 901
- Date:
Fri Aug 2 17:39:43 2002
- Orig file:
linux-2.4.18/arch/ppc64/kernel/iSeries_setup.c
- Orig date:
Wed Dec 31 16:00:00 1969
diff -urN linux-2.4.18/arch/ppc64/kernel/iSeries_setup.c linux-2.4.19/arch/ppc64/kernel/iSeries_setup.c
@@ -0,0 +1,900 @@
+/*
+ *
+ *
+ * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
+ * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
+ *
+ * Module name: iSeries_setup.c
+ *
+ * Description:
+ * Architecture- / platform-specific boot-time initialization code for
+ * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
+ * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
+ * <dan@net4x.com>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/config.h>
+#include <linux/init.h>
+#include <linux/threads.h>
+#include <linux/smp.h>
+#include <linux/param.h>
+#include <linux/string.h>
+#include <linux/bootmem.h>
+#include <linux/blk.h>
+#include <linux/seq_file.h>
+
+#include <asm/processor.h>
+#include <asm/machdep.h>
+#include <asm/page.h>
+#include <asm/mmu.h>
+#include <asm/pgtable.h>
+#include <asm/mmu_context.h>
+
+#include <asm/time.h>
+#include "iSeries_setup.h"
+#include <asm/naca.h>
+#include <asm/paca.h>
+#include <asm/iSeries/LparData.h>
+#include <asm/iSeries/HvCallHpt.h>
+#include <asm/iSeries/HvLpConfig.h>
+#include <asm/iSeries/HvCallEvent.h>
+#include <asm/iSeries/HvCallSm.h>
+#include <asm/iSeries/HvCallXm.h>
+#include <asm/iSeries/ItLpQueue.h>
+#include <asm/iSeries/IoHriMainStore.h>
+#include <asm/iSeries/iSeries_proc.h>
+#include <asm/proc_pmc.h>
+#include <asm/iSeries/mf.h>
+
+/* Function Prototypes */
+
+extern void abort(void);
+#ifdef CONFIG_PPC_ISERIES
+static void build_iSeries_Memory_Map( void );
+static void setup_iSeries_cache_sizes( void );
+static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
+#endif
+void build_valid_hpte( unsigned long vsid, unsigned long ea, unsigned long pa,
+ pte_t * ptep, unsigned hpteflags, unsigned bolted );
+extern void ppcdbg_initialize(void);
+extern void iSeries_pcibios_init(void);
+extern void iSeries_pcibios_fixup(void);
+extern void iSeries_pcibios_fixup_bus(int);
+static void iSeries_setup_dprofile(void);
+
+/* Global Variables */
+
+static unsigned long procFreqHz = 0;
+static unsigned long procFreqMhz = 0;
+static unsigned long procFreqMhzHundreths = 0;
+
+static unsigned long tbFreqHz = 0;
+static unsigned long tbFreqMhz = 0;
+static unsigned long tbFreqMhzHundreths = 0;
+
+unsigned long dprof_shift = 0;
+unsigned long dprof_len = 0;
+unsigned int * dprof_buffer = NULL;
+
+int piranha_simulator = 0;
+
+extern char _end[];
+
+extern int rd_size; /* Defined in drivers/block/rd.c */
+extern unsigned long klimit;
+extern unsigned long embedded_sysmap_start;
+extern unsigned long embedded_sysmap_end;
+
+extern unsigned long iSeries_recal_tb;
+extern unsigned long iSeries_recal_titan;
+
+extern char _stext;
+extern char _etext;
+
+static int mf_initialized = 0;
+
+struct MemoryBlock {
+ unsigned long absStart;
+ unsigned long absEnd;
+ unsigned long logicalStart;
+ unsigned long logicalEnd;
+};
+
+/*
+ * Process the main store vpd to determine where the holes in memory are
+ * and return the number of physical blocks and fill in the array of
+ * block data.
+ */
+
+unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
+{
+ /* Determine if absolute memory has any
+ * holes so that we can interpret the
+ * access map we get back from the hypervisor
+ * correctly.
+ */
+
+ unsigned long holeFirstChunk, holeSizeChunks;
+ unsigned long numMemoryBlocks = 1;
+ struct IoHriMainStoreSegment4 * msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd;
+ unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
+ unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
+ unsigned long holeSize = holeEnd - holeStart;
+
+ printk("Mainstore_VPD: Condor\n");
+
+ mb_array[0].logicalStart = 0;
+ mb_array[0].logicalEnd = 0x100000000;
+ mb_array[0].absStart = 0;
+ mb_array[0].absEnd = 0x100000000;
+
+ if ( holeSize ) {
+ numMemoryBlocks = 2;
+ holeStart = holeStart & 0x000fffffffffffff;
+ holeStart = addr_to_chunk(holeStart);
+ holeFirstChunk = holeStart;
+ holeSize = addr_to_chunk(holeSize);
+ holeSizeChunks = holeSize;
+ printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
+ holeFirstChunk, holeSizeChunks );
+ mb_array[0].logicalEnd = holeFirstChunk;
+ mb_array[0].absEnd = holeFirstChunk;
+ mb_array[1].logicalStart = holeFirstChunk;
+ mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
+ mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
+ mb_array[1].absEnd = 0x100000000;
+ }
+
+
+ return numMemoryBlocks;
+}
+
+#define MaxSegmentAreas 32
+#define MaxSegmentAdrRangeBlocks 128
+#define MaxAreaRangeBlocks 4
+unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
+{
+ struct IoHriMainStoreSegment5 * msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd;
+ unsigned long numSegmentBlocks = 0;
+ u32 existsBits = msVpdP->msAreaExists;
+ unsigned long area_num;
+
+ printk("Mainstore_VPD: Regatta\n");
+
+ for ( area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
+ unsigned long numAreaBlocks;
+ struct IoHriMainStoreArea4 * currentArea;
+
+ if ( existsBits & 0x80000000 ) {
+ unsigned long block_num;
+
+ currentArea = &msVpdP->msAreaArray[area_num];
+ numAreaBlocks = currentArea->numAdrRangeBlocks;
+
+ printk("ms_vpd: processing area %2ld blocks=%ld", area_num, numAreaBlocks);
+
+ for ( block_num = 0; block_num < numAreaBlocks; ++block_num ) {
+ /* Process an address range block */
+ struct MemoryBlock tempBlock;
+ unsigned long i;
+
+ tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
+ tempBlock.absEnd = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
+ tempBlock.logicalStart = 0;
+ tempBlock.logicalEnd = 0;
+
+ printk("\n block %ld absStart=%016lx absEnd=%016lx", block_num,
+ tempBlock.absStart, tempBlock.absEnd);
+
+ for ( i=0; i<numSegmentBlocks; ++i ) {
+ if ( mb_array[i].absStart == tempBlock.absStart )
+ break;
+ }
+ if ( i == numSegmentBlocks ) {
+ if ( numSegmentBlocks == max_entries ) {
+ panic("iSeries_process_mainstore_vpd: too many memory blocks");
+ }
+ mb_array[numSegmentBlocks] = tempBlock;
+ ++numSegmentBlocks;
+ }
+ else {
+ printk(" (duplicate)");
+ }
+ }
+ printk("\n");
+ }
+ existsBits <<= 1;
+ }
+ /* Now sort the blocks found into ascending sequence */
+ if ( numSegmentBlocks > 1 ) {
+ unsigned long m, n;
+ for ( m=0; m<numSegmentBlocks-1; ++m ) {
+ for ( n=numSegmentBlocks-1; m<n; --n ) {
+ if ( mb_array[n].absStart < mb_array[n-1].absStart ) {
+ struct MemoryBlock tempBlock;
+ tempBlock = mb_array[n];
+ mb_array[n] = mb_array[n-1];
+ mb_array[n-1] = tempBlock;
+ }
+
+ }
+ }
+ }
+ /* Assign "logical" addresses to each block. These
+ * addresses correspond to the hypervisor "bitmap" space.
+ * Convert all addresses into units of 256K chunks.
+ */
+ {
+ unsigned long i, nextBitmapAddress;
+ printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
+ nextBitmapAddress = 0;
+ for ( i=0; i<numSegmentBlocks; ++i ) {
+ unsigned long length = mb_array[i].absEnd - mb_array[i].absStart;
+ mb_array[i].logicalStart = nextBitmapAddress;
+ mb_array[i].logicalEnd = nextBitmapAddress + length;
+ nextBitmapAddress += length;
+ printk(" Bitmap range: %016lx - %016lx\n"
+ " Absolute range: %016lx - %016lx\n",
+ mb_array[i].logicalStart, mb_array[i].logicalEnd,
+ mb_array[i].absStart, mb_array[i].absEnd);
+ mb_array[i].absStart = addr_to_chunk( mb_array[i].absStart & 0x000fffffffffffff );
+ mb_array[i].absEnd = addr_to_chunk( mb_array[i].absEnd & 0x000fffffffffffff );
+ mb_array[i].logicalStart = addr_to_chunk( mb_array[i].logicalStart );
+ mb_array[i].logicalEnd = addr_to_chunk( mb_array[i].logicalEnd );
+ }
+ }
+
+ return numSegmentBlocks;
+
+}
+
+unsigned long iSeries_process_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
+{
+ unsigned long i;
+ unsigned long mem_blocks = 0;
+ if ( __is_processor( PV_POWER4 ) )
+ mem_blocks = iSeries_process_Regatta_mainstore_vpd( mb_array, max_entries );
+ else
+ mem_blocks = iSeries_process_Condor_mainstore_vpd( mb_array, max_entries );
+
+ printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
+ for ( i=0; i<mem_blocks; ++i ) {
+ printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
+ " abs chunks %016lx - %016lx\n",
+ i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
+ mb_array[i].absStart, mb_array[i].absEnd);
+ }
+
+ return mem_blocks;
+}
+
+/*
+ * void __init iSeries_init_early()
+ */
+
+
+
+void __init
+iSeries_init_early(void)
+{
+#ifdef CONFIG_PPC_ISERIES
+ ppcdbg_initialize();
+
+#if defined(CONFIG_BLK_DEV_INITRD)
+ /*
+ * If the init RAM disk has been configured and there is
+ * a non-zero starting address for it, set it up
+ */
+
+ if ( naca->xRamDisk ) {
+ initrd_start = (unsigned long)__va(naca->xRamDisk);
+ initrd_end = initrd_start + naca->xRamDiskSize * PAGE_SIZE;
+ initrd_below_start_ok = 1; // ramdisk in kernel space
+ ROOT_DEV = MKDEV( RAMDISK_MAJOR, 0 );
+
+ if ( ((rd_size*1024)/PAGE_SIZE) < naca->xRamDiskSize )
+ rd_size = (naca->xRamDiskSize*PAGE_SIZE)/1024;
+ } else
+
+#endif /* CONFIG_BLK_DEV_INITRD */
+ {
+
+ /* ROOT_DEV = MKDEV( VIODASD_MAJOR, 1 ); */
+ }
+
+ iSeries_recal_tb = get_tb();
+ iSeries_recal_titan = HvCallXm_loadTod();
+
+ ppc_md.setup_arch = iSeries_setup_arch;
+ ppc_md.setup_residual = iSeries_setup_residual;
+ ppc_md.get_cpuinfo = iSeries_get_cpuinfo;
+ ppc_md.irq_cannonicalize = NULL;
+ ppc_md.init_IRQ = iSeries_init_IRQ;
+ ppc_md.init_ras_IRQ = NULL;
+ ppc_md.get_irq = iSeries_get_irq;
+ ppc_md.init = NULL;
+
+ ppc_md.pcibios_fixup = iSeries_pcibios_fixup;
+ ppc_md.pcibios_fixup_bus = iSeries_pcibios_fixup_bus;
+
+ ppc_md.restart = iSeries_restart;
+ ppc_md.power_off = iSeries_power_off;
+ ppc_md.halt = iSeries_halt;
+
+ ppc_md.time_init = NULL;
+ ppc_md.get_boot_time = iSeries_get_boot_time;
+ ppc_md.set_rtc_time = iSeries_set_rtc_time;
+ ppc_md.get_rtc_time = iSeries_get_rtc_time;
+ ppc_md.calibrate_decr = iSeries_calibrate_decr;
+ ppc_md.progress = iSeries_progress;
+
+ ppc_md.kbd_setkeycode = NULL;
+ ppc_md.kbd_getkeycode = NULL;
+ ppc_md.kbd_translate = NULL;
+ ppc_md.kbd_unexpected_up = NULL;
+ ppc_md.kbd_leds = NULL;
+ ppc_md.kbd_init_hw = NULL;
+
+#if defined(CONFIG_MAGIC_SYSRQ)
+ ppc_md.ppc_kbd_sysrq_xlate = NULL;
+#endif
+
+ hpte_init_iSeries();
+ tce_init_iSeries();
+
+ /* Initialize the table which translate Linux physical addresses to
+ * AS/400 absolute addresses
+ */
+
+ build_iSeries_Memory_Map();
+
+ setup_iSeries_cache_sizes();
+
+ /* Initialize machine-dependency vectors */
+
+
+#ifdef CONFIG_SMP
+ smp_init_iSeries();
+#endif
+
+ if ( itLpNaca.xPirEnvironMode == 0 )
+ piranha_simulator = 1;
+#endif
+}
+
+/*
+ * void __init iSeries_init()
+ */
+
+void __init
+iSeries_init(unsigned long r3, unsigned long r4, unsigned long r5,
+ unsigned long r6, unsigned long r7)
+{
+ /* Associate Lp Event Queue 0 with processor 0 */
+ HvCallEvent_setLpEventQueueInterruptProc( 0, 0 );
+
+ {
+ /* copy the command line parameter from the primary VSP */
+ char *p, *q;
+ HvCallEvent_dmaToSp( cmd_line,
+ 2*64*1024,
+ 256,
+ HvLpDma_Direction_RemoteToLocal );
+
+ p = q = cmd_line + 255;
+ while( p > cmd_line ) {
+ if ((*p == 0) || (*p == ' ') || (*p == '\n'))
+ --p;
+ else
+ break;
+ }
+ if ( p < q )
+ *(p+1) = 0;
+ }
+
+ if (strstr(cmd_line, "dprofile=")) {
+ char *p, *q;
+
+ for (q = cmd_line; (p = strstr(q, "dprofile=")) != 0; ) {
+ unsigned long size, new_klimit;
+ q = p + 9;
+ if (p > cmd_line && p[-1] != ' ')
+ continue;
+ dprof_shift = simple_strtoul(q, &q, 0);
+ dprof_len = (unsigned long)&_etext - (unsigned long)&_stext;
+ dprof_len >>= dprof_shift;
+ size = ((dprof_len * sizeof(unsigned int)) + (PAGE_SIZE-1)) & PAGE_MASK;
+ dprof_buffer = (unsigned int *)((klimit + (PAGE_SIZE-1)) & PAGE_MASK);
+ new_klimit = ((unsigned long)dprof_buffer) + size;
+ lmb_reserve( __pa(klimit), (new_klimit-klimit));
+ klimit = new_klimit;
+ memset( dprof_buffer, 0, size );
+ }
+ }
+
+ iSeries_setup_dprofile();
+
+ iSeries_proc_early_init();
+ mf_init();
+ mf_initialized = 1;
+ mb();
+
+ iSeries_proc_callback( &pmc_proc_init );
+}
+
+#ifdef CONFIG_PPC_ISERIES
+/*
+ * The iSeries may have very large memories ( > 128 GB ) and a partition
+ * may get memory in "chunks" that may be anywhere in the 2**52 real
+ * address space. The chunks are 256K in size. To map this to the
+ * memory model Linux expects, the AS/400 specific code builds a
+ * translation table to translate what Linux thinks are "physical"
+ * addresses to the actual real addresses. This allows us to make
+ * it appear to Linux that we have contiguous memory starting at
+ * physical address zero while in fact this could be far from the truth.
+ * To avoid confusion, I'll let the words physical and/or real address
+ * apply to the Linux addresses while I'll use "absolute address" to
+ * refer to the actual hardware real address.
+ *
+ * build_iSeries_Memory_Map gets information from the Hypervisor and
+ * looks at the Main Store VPD to determine the absolute addresses
+ * of the memory that has been assigned to our partition and builds
+ * a table used to translate Linux's physical addresses to these
+ * absolute addresses. Absolute addresses are needed when
+ * communicating with the hypervisor (e.g. to build HPT entries)
+ */
+
+static void __init build_iSeries_Memory_Map(void)
+{
+ u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
+ u32 nextPhysChunk;
+ u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
+ u32 num_ptegs;
+ u32 totalChunks,moreChunks;
+ u32 currChunk, thisChunk, absChunk;
+ u32 currDword;
+ u32 chunkBit;
+ u64 map;
+ struct MemoryBlock mb[32];
+ unsigned long numMemoryBlocks, curBlock;
+
+ /* Chunk size on iSeries is 256K bytes */
+ totalChunks = (u32)HvLpConfig_getMsChunks();
+ klimit = msChunks_alloc(klimit, totalChunks, 1UL<<18);
+
+ /* Get absolute address of our load area
+ * and map it to physical address 0
+ * This guarantees that the loadarea ends up at physical 0
+ * otherwise, it might not be returned by PLIC as the first
+ * chunks
+ */
+
+ loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
+ loadAreaSize = itLpNaca.xLoadAreaChunks;
+
+ /* Only add the pages already mapped here.
+ * Otherwise we might add the hpt pages
+ * The rest of the pages of the load area
+ * aren't in the HPT yet and can still
+ * be assigned an arbitrary physical address
+ */
+ if ( (loadAreaSize * 64) > HvPagesToMap )
+ loadAreaSize = HvPagesToMap / 64;
+
+ loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
+
+ /* TODO Do we need to do something if the HPT is in the 64MB load area?
+ * This would be required if the itLpNaca.xLoadAreaChunks includes
+ * the HPT size
+ */
+
+ printk( "Mapping load area - physical addr = 0000000000000000\n"
+ " absolute addr = %016lx\n",
+ chunk_to_addr(loadAreaFirstChunk) );
+ printk( "Load area size %dK\n", loadAreaSize*256 );
+
+ for ( nextPhysChunk = 0;
+ nextPhysChunk < loadAreaSize;
+ ++nextPhysChunk ) {
+ msChunks.abs[nextPhysChunk] = loadAreaFirstChunk+nextPhysChunk;
+ }
+
+ /* Get absolute address of our HPT and remember it so
+ * we won't map it to any physical address
+ */
+
+ hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
+ hptSizePages = (u32)(HvCallHpt_getHptPages());
+ hptSizeChunks = hptSizePages >> (msChunks.chunk_shift-PAGE_SHIFT);
+ hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
+
+ printk( "HPT absolute addr = %016lx, size = %dK\n",
+ chunk_to_addr(hptFirstChunk), hptSizeChunks*256 );
+
+ /* Fill in the htab_data structure */
+
+ /* Fill in size of hashed page table */
+ num_ptegs = hptSizePages * (PAGE_SIZE/(sizeof(HPTE)*HPTES_PER_GROUP));
+ htab_data.htab_num_ptegs = num_ptegs;
+ htab_data.htab_hash_mask = num_ptegs - 1;
+
+ /* The actual hashed page table is in the hypervisor, we have no direct access */
+ htab_data.htab = NULL;
+
+ /* Determine if absolute memory has any
+ * holes so that we can interpret the
+ * access map we get back from the hypervisor
+ * correctly.
+ */
+ numMemoryBlocks = iSeries_process_mainstore_vpd( mb, 32 );
+
+ /* Process the main store access map from the hypervisor
+ * to build up our physical -> absolute translation table
+ */
+ curBlock = 0;
+ currChunk = 0;
+ currDword = 0;
+ moreChunks = totalChunks;
+
+ while ( moreChunks ) {
+ map = HvCallSm_get64BitsOfAccessMap( itLpNaca.xLpIndex,
+ currDword );
+ thisChunk = currChunk;
+ while ( map ) {
+ chunkBit = map >> 63;
+ map <<= 1;
+ if ( chunkBit ) {
+ --moreChunks;
+
+ while ( thisChunk >= mb[curBlock].logicalEnd ) {
+ ++curBlock;
+ if ( curBlock >= numMemoryBlocks )
+ panic("out of memory blocks");
+ }
+ if ( thisChunk < mb[curBlock].logicalStart )
+ panic("memory block error");
+
+ absChunk = mb[curBlock].absStart + ( thisChunk - mb[curBlock].logicalStart );
+
+ if ( ( ( absChunk < hptFirstChunk ) ||
+ ( absChunk > hptLastChunk ) ) &&
+ ( ( absChunk < loadAreaFirstChunk ) ||
+ ( absChunk > loadAreaLastChunk ) ) ) {
+ msChunks.abs[nextPhysChunk] = absChunk;
+ ++nextPhysChunk;
+ }
+ }
+ ++thisChunk;
+ }
+ ++currDword;
+ currChunk += 64;
+ }
+
+ /* main store size (in chunks) is
+ * totalChunks - hptSizeChunks
+ * which should be equal to
+ * nextPhysChunk
+ */
+ naca->physicalMemorySize = chunk_to_addr(nextPhysChunk);
+
+ /* Bolt kernel mappings for all of memory */
+ iSeries_bolt_kernel( 0, naca->physicalMemorySize );
+
+ lmb_init();
+ lmb_add( 0, naca->physicalMemorySize );
+ lmb_analyze(); /* ?? */
+ lmb_reserve( 0, __pa(klimit));
+
+ /*
+ * Hardcode to GP size. I am not sure where to get this info. DRENG
+ */
+ naca->slb_size = 64;
+}
+
+/*
+ * Set up the variables that describe the cache line sizes
+ * for this machine.
+ */
+
+static void __init setup_iSeries_cache_sizes(void)
+{
+ unsigned i,n;
+ unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
+
+ naca->iCacheL1LineSize = xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
+ naca->dCacheL1LineSize = xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
+ naca->iCacheL1LinesPerPage = PAGE_SIZE / naca->iCacheL1LineSize;
+ naca->dCacheL1LinesPerPage = PAGE_SIZE / naca->dCacheL1LineSize;
+ i = naca->iCacheL1LineSize;
+ n = 0;
+ while ((i=(i/2))) ++n;
+ naca->iCacheL1LogLineSize = n;
+ i = naca->dCacheL1LineSize;
+ n = 0;
+ while ((i=(i/2))) ++n;
+ naca->dCacheL1LogLineSize = n;
+
+ printk( "D-cache line size = %d (log = %d)\n",
+ (unsigned)naca->dCacheL1LineSize,
+ (unsigned)naca->dCacheL1LogLineSize );
+ printk( "I-cache line size = %d (log = %d)\n",
+ (unsigned)naca->iCacheL1LineSize,
+ (unsigned)naca->iCacheL1LogLineSize );
+
+}
+
+/*
+ * Bolt the kernel addr space into the HPT
+ */
+
+static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
+{
+ unsigned long pa;
+ unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
+ HPTE hpte;
+
+ for (pa=saddr; pa < eaddr ;pa+=PAGE_SIZE) {
+ unsigned long ea = (unsigned long)__va(pa);
+ unsigned long vsid = get_kernel_vsid( ea );
+ unsigned long va = ( vsid << 28 ) | ( pa & 0xfffffff );
+ unsigned long vpn = va >> PAGE_SHIFT;
+ unsigned long slot = HvCallHpt_findValid( &hpte, vpn );
+ if ( hpte.dw0.dw0.v ) {
+ /* HPTE exists, so just bolt it */
+ HvCallHpt_setSwBits( slot, 0x10, 0 );
+ } else {
+ /* No HPTE exists, so create a new bolted one */
+ build_valid_hpte(vsid, ea, pa, NULL, mode_rw, 1);
+ }
+ }
+}
+#endif /* CONFIG_PPC_ISERIES */
+
+extern unsigned long ppc_proc_freq;
+extern unsigned long ppc_tb_freq;
+
+/*
+ * Document me.
+ */
+void __init
+iSeries_setup_arch(void)
+{
+ void * eventStack;
+ unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
+
+ /* Setup the Lp Event Queue */
+
+ /* Allocate a page for the Event Stack
+ * The hypervisor wants the absolute real address, so
+ * we subtract out the KERNELBASE and add in the
+ * absolute real address of the kernel load area
+ */
+
+ eventStack = alloc_bootmem_pages( LpEventStackSize );
+
+ memset( eventStack, 0, LpEventStackSize );
+
+ /* Invoke the hypervisor to initialize the event stack */
+
+ HvCallEvent_setLpEventStack( 0, eventStack, LpEventStackSize );
+
+ /* Initialize fields in our Lp Event Queue */
+
+ xItLpQueue.xSlicEventStackPtr = (char *)eventStack;
+ xItLpQueue.xSlicCurEventPtr = (char *)eventStack;
+ xItLpQueue.xSlicLastValidEventPtr = (char *)eventStack +
+ (LpEventStackSize - LpEventMaxSize);
+ xItLpQueue.xIndex = 0;
+
+ /* Compute processor frequency */
+ procFreqHz = (((1UL<<34) * 1000000) / xIoHriProcessorVpd[procIx].xProcFreq );
+ procFreqMhz = procFreqHz / 1000000;
+ procFreqMhzHundreths = (procFreqHz/10000) - (procFreqMhz*100);
+
+ ppc_proc_freq = procFreqHz;
+
+ /* Compute time base frequency */
+ tbFreqHz = (((1UL<<32) * 1000000) / xIoHriProcessorVpd[procIx].xTimeBaseFreq );
+ tbFreqMhz = tbFreqHz / 1000000;
+ tbFreqMhzHundreths = (tbFreqHz/10000) - (tbFreqMhz*100);
+
+ ppc_tb_freq = tbFreqHz;
+
+ printk("Max logical processors = %d\n",
+ itVpdAreas.xSlicMaxLogicalProcs );
+ printk("Max physical processors = %d\n",
+ itVpdAreas.xSlicMaxPhysicalProcs );
+ printk("Processor frequency = %lu.%02lu\n",
+ procFreqMhz,
+ procFreqMhzHundreths );
+ printk("Time base frequency = %lu.%02lu\n",
+ tbFreqMhz,
+ tbFreqMhzHundreths );
+ printk("Processor version = %x\n",
+ xIoHriProcessorVpd[procIx].xPVR );
+
+}
+
+/*
+ * int as400_setup_residual()
+ *
+ * Description:
+ * This routine pretty-prints CPU information gathered from the VPD
+ * for use in /proc/cpuinfo
+ *
+ * Input(s):
+ * *buffer - Buffer into which CPU data is to be printed.
+ *
+ * Output(s):
+ * *buffer - Buffer with CPU data.
+ *
+ * Returns:
+ * The number of bytes copied into 'buffer' if OK, otherwise zero or less
+ * on error.
+ */
+void iSeries_setup_residual(struct seq_file *m)
+{
+
+ seq_printf(m,"clock\t\t: %lu.%02luMhz\n",
+ procFreqMhz, procFreqMhzHundreths );
+ seq_printf(m,"time base\t: %lu.%02luMHz\n",
+ tbFreqMhz, tbFreqMhzHundreths );
+ seq_printf(m,"i-cache\t\t: %d\n",
+ naca->iCacheL1LineSize);
+ seq_printf(m,"d-cache\t\t: %d\n",
+ naca->dCacheL1LineSize);
+
+}
+
+void iSeries_get_cpuinfo(struct seq_file *m)
+{
+
+ seq_printf(m,"machine\t\t: 64-bit iSeries Logical Partition\n");
+
+}
+
+/*
+ * Document me.
+ * and Implement me.
+ */
+int
+iSeries_get_irq(struct pt_regs *regs)
+{
+ /* -2 means ignore this interrupt */
+ return -2;
+}
+
+/*
+ * Document me.
+ */
+void
+iSeries_restart(char *cmd)
+{
+ mf_reboot();
+}
+
+/*
+ * Document me.
+ */
+void
+iSeries_power_off(void)
+{
+ mf_powerOff();
+}
+
+/*
+ * Document me.
+ */
+void
+iSeries_halt(void)
+{
+ mf_powerOff();
+}
+
+/*
+ * Nothing to do here.
+ */
+void __init
+iSeries_time_init(void)
+{
+ /* Nothing to do */
+}
+
+/* JDH Hack */
+unsigned long jdh_time = 0;
+
+extern void setup_default_decr(void);
+
+/*
+ * void __init iSeries_calibrate_decr()
+ *
+ * Description:
+ * This routine retrieves the internal processor frequency from the VPD,
+ * and sets up the kernel timer decrementer based on that value.
+ *
+ */
+void __init
+iSeries_calibrate_decr(void)
+{
+ unsigned long cyclesPerUsec;
+
+ struct div_result divres;
+
+ /* Compute decrementer (and TB) frequency
+ * in cycles/sec
+ */
+
+ cyclesPerUsec = ppc_tb_freq / 1000000; /* cycles / usec */
+
+ /* Set the amount to refresh the decrementer by. This
+ * is the number of decrementer ticks it takes for
+ * 1/HZ seconds.
+ */
+
+ tb_ticks_per_jiffy = ppc_tb_freq / HZ;
+
+#if 0
+ /* TEST CODE FOR ADJTIME */
+ tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
+ /* END OF TEST CODE */
+#endif
+
+ /*
+ * tb_ticks_per_sec = freq; would give better accuracy
+ * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
+ * that jiffies (and xtime) will match the time returned
+ * by do_gettimeofday.
+ */
+ tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
+ tb_ticks_per_usec = cyclesPerUsec;
+ tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
+ div128_by_32( 1024*1024, 0, tb_ticks_per_sec, &divres );
+ tb_to_xs = divres.result_low;
+ setup_default_decr();
+}
+
+void __init
+iSeries_progress( char * st, unsigned short code )
+{
+ printk( "Progress: [%04x] - %s\n", (unsigned)code, st );
+ if ( !piranha_simulator && mf_initialized ) {
+ if (code != 0xffff)
+ mf_displayProgress( code );
+ else
+ mf_clearSrc();
+ }
+}
+
+
+void iSeries_fixup_klimit(void)
+{
+ /* Change klimit to take into account any ram disk that may be included */
+ if (naca->xRamDisk)
+ klimit = KERNELBASE + (u64)naca->xRamDisk + (naca->xRamDiskSize * PAGE_SIZE);
+ else {
+ /* No ram disk was included - check and see if there was an embedded system map */
+ /* Change klimit to take into account any embedded system map */
+ if (embedded_sysmap_end)
+ klimit = KERNELBASE + ((embedded_sysmap_end+4095) & 0xfffffffffffff000);
+ }
+}
+
+static void iSeries_setup_dprofile(void)
+{
+ if ( dprof_buffer ) {
+ unsigned i;
+ for (i=0; i<MAX_PACAS; ++i) {
+ paca[i].prof_shift = dprof_shift;
+ paca[i].prof_len = dprof_len-1;
+ paca[i].prof_buffer = dprof_buffer;
+ paca[i].prof_stext = (unsigned *)&_stext;
+ mb();
+ paca[i].prof_enabled = 1;
+ }
+ }
+}
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)