patch-2.4.20 linux-2.4.20/drivers/net/e1000/e1000_hw.c

Next file: linux-2.4.20/drivers/net/e1000/e1000_hw.h
Previous file: linux-2.4.20/drivers/net/e1000/e1000_ethtool.c
Back to the patch index
Back to the overall index

diff -urN linux-2.4.19/drivers/net/e1000/e1000_hw.c linux-2.4.20/drivers/net/e1000/e1000_hw.c
@@ -0,0 +1,3610 @@
+/*******************************************************************************
+
+  
+  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
+  
+  This program is free software; you can redistribute it and/or modify it 
+  under the terms of the GNU General Public License as published by the Free 
+  Software Foundation; either version 2 of the License, or (at your option) 
+  any later version.
+  
+  This program is distributed in the hope that it will be useful, but WITHOUT 
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
+  more details.
+  
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc., 59 
+  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
+  
+  The full GNU General Public License is included in this distribution in the
+  file called LICENSE.
+  
+  Contact Information:
+  Linux NICS <linux.nics@intel.com>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+/* e1000_hw.c
+ * Shared functions for accessing and configuring the MAC
+ */
+
+#include "e1000_hw.h"
+
+static int32_t e1000_setup_fiber_link(struct e1000_hw *hw);
+static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
+static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
+static int32_t e1000_force_mac_fc(struct e1000_hw *hw);
+static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
+static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
+static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count);
+static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
+static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
+static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
+static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
+static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count);
+static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw);
+static void e1000_setup_eeprom(struct e1000_hw *hw);
+static void e1000_clock_eeprom(struct e1000_hw *hw);
+static void e1000_cleanup_eeprom(struct e1000_hw *hw);
+static void e1000_standby_eeprom(struct e1000_hw *hw);
+static int32_t e1000_id_led_init(struct e1000_hw * hw);
+
+/******************************************************************************
+ * Set the mac type member in the hw struct.
+ * 
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_set_mac_type");
+
+    switch (hw->device_id) {
+    case E1000_DEV_ID_82542:
+        switch (hw->revision_id) {
+        case E1000_82542_2_0_REV_ID:
+            hw->mac_type = e1000_82542_rev2_0;
+            break;
+        case E1000_82542_2_1_REV_ID:
+            hw->mac_type = e1000_82542_rev2_1;
+            break;
+        default:
+            /* Invalid 82542 revision ID */
+            return -E1000_ERR_MAC_TYPE;
+        }
+        break;
+    case E1000_DEV_ID_82543GC_FIBER:
+    case E1000_DEV_ID_82543GC_COPPER:
+        hw->mac_type = e1000_82543;
+        break;
+    case E1000_DEV_ID_82544EI_COPPER:
+    case E1000_DEV_ID_82544EI_FIBER:
+    case E1000_DEV_ID_82544GC_COPPER:
+    case E1000_DEV_ID_82544GC_LOM:
+        hw->mac_type = e1000_82544;
+        break;
+    case E1000_DEV_ID_82540EM:
+    case E1000_DEV_ID_82540EM_LOM:
+    case E1000_DEV_ID_82540EP:
+    case E1000_DEV_ID_82540EP_LOM:
+    case E1000_DEV_ID_82540EP_LP:
+        hw->mac_type = e1000_82540;
+        break;
+    case E1000_DEV_ID_82545EM_COPPER:
+    case E1000_DEV_ID_82545EM_FIBER:
+        hw->mac_type = e1000_82545;
+        break;
+    case E1000_DEV_ID_82546EB_COPPER:
+    case E1000_DEV_ID_82546EB_FIBER:
+        hw->mac_type = e1000_82546;
+        break;
+    default:
+        /* Should never have loaded on this device */
+        return -E1000_ERR_MAC_TYPE;
+    }
+    return E1000_SUCCESS;
+}
+/******************************************************************************
+ * Reset the transmit and receive units; mask and clear all interrupts.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_reset_hw(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint32_t ctrl_ext;
+    uint32_t icr;
+    uint32_t manc;
+
+    DEBUGFUNC("e1000_reset_hw");
+    
+    /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
+    if(hw->mac_type == e1000_82542_rev2_0) {
+        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+        e1000_pci_clear_mwi(hw);
+    }
+
+    /* Clear interrupt mask to stop board from generating interrupts */
+    DEBUGOUT("Masking off all interrupts\n");
+    E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+    /* Disable the Transmit and Receive units.  Then delay to allow
+     * any pending transactions to complete before we hit the MAC with
+     * the global reset.
+     */
+    E1000_WRITE_REG(hw, RCTL, 0);
+    E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
+    E1000_WRITE_FLUSH(hw);
+
+    /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
+    hw->tbi_compatibility_on = FALSE;
+
+    /* Delay to allow any outstanding PCI transactions to complete before
+     * resetting the device
+     */ 
+    msec_delay(10);
+
+    /* Issue a global reset to the MAC.  This will reset the chip's
+     * transmit, receive, DMA, and link units.  It will not effect
+     * the current PCI configuration.  The global reset bit is self-
+     * clearing, and should clear within a microsecond.
+     */
+    DEBUGOUT("Issuing a global reset to MAC\n");
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    if(hw->mac_type > e1000_82543)
+        E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
+    else
+        E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
+
+    /* Force a reload from the EEPROM if necessary */
+    if(hw->mac_type < e1000_82540) {
+        /* Wait for reset to complete */
+        udelay(10);
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH(hw);
+        /* Wait for EEPROM reload */
+        msec_delay(2);
+    } else {
+        /* Wait for EEPROM reload (it happens automatically) */
+        msec_delay(4);
+        /* Dissable HW ARPs on ASF enabled adapters */
+        manc = E1000_READ_REG(hw, MANC);
+        manc &= ~(E1000_MANC_ARP_EN);
+        E1000_WRITE_REG(hw, MANC, manc);
+    }
+    
+    /* Clear interrupt mask to stop board from generating interrupts */
+    DEBUGOUT("Masking off all interrupts\n");
+    E1000_WRITE_REG(hw, IMC, 0xffffffff);
+
+    /* Clear any pending interrupt events. */
+    icr = E1000_READ_REG(hw, ICR);
+
+    /* If MWI was previously enabled, reenable it. */
+    if(hw->mac_type == e1000_82542_rev2_0) {
+        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+            e1000_pci_set_mwi(hw);
+    }
+}
+
+/******************************************************************************
+ * Performs basic configuration of the adapter.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * 
+ * Assumes that the controller has previously been reset and is in a 
+ * post-reset uninitialized state. Initializes the receive address registers,
+ * multicast table, and VLAN filter table. Calls routines to setup link
+ * configuration and flow control settings. Clears all on-chip counters. Leaves
+ * the transmit and receive units disabled and uninitialized.
+ *****************************************************************************/
+int32_t
+e1000_init_hw(struct e1000_hw *hw)
+{
+    uint32_t ctrl, status;
+    uint32_t i;
+    int32_t ret_val;
+    uint16_t pcix_cmd_word;
+    uint16_t pcix_stat_hi_word;
+    uint16_t cmd_mmrbc;
+    uint16_t stat_mmrbc;
+
+    DEBUGFUNC("e1000_init_hw");
+
+    /* Initialize Identification LED */
+    ret_val = e1000_id_led_init(hw);
+    if(ret_val < 0) {
+        DEBUGOUT("Error Initializing Identification LED\n");
+        return ret_val;
+    }
+    
+    /* Set the Media Type and exit with error if it is not valid. */
+    if(hw->mac_type != e1000_82543) {
+        /* tbi_compatibility is only valid on 82543 */
+        hw->tbi_compatibility_en = FALSE;
+    }
+
+    if(hw->mac_type >= e1000_82543) {
+        status = E1000_READ_REG(hw, STATUS);
+        if(status & E1000_STATUS_TBIMODE) {
+            hw->media_type = e1000_media_type_fiber;
+            /* tbi_compatibility not valid on fiber */
+            hw->tbi_compatibility_en = FALSE;
+        } else {
+            hw->media_type = e1000_media_type_copper;
+        }
+    } else {
+        /* This is an 82542 (fiber only) */
+        hw->media_type = e1000_media_type_fiber;
+    }
+
+    /* Disabling VLAN filtering. */
+    DEBUGOUT("Initializing the IEEE VLAN\n");
+    E1000_WRITE_REG(hw, VET, 0);
+
+    e1000_clear_vfta(hw);
+
+    /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
+    if(hw->mac_type == e1000_82542_rev2_0) {
+        DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
+        e1000_pci_clear_mwi(hw);
+        E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(5);
+    }
+
+    /* Setup the receive address. This involves initializing all of the Receive
+     * Address Registers (RARs 0 - 15).
+     */
+    e1000_init_rx_addrs(hw);
+
+    /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
+    if(hw->mac_type == e1000_82542_rev2_0) {
+        E1000_WRITE_REG(hw, RCTL, 0);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(1);
+        if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+            e1000_pci_set_mwi(hw);
+    }
+
+    /* Zero out the Multicast HASH table */
+    DEBUGOUT("Zeroing the MTA\n");
+    for(i = 0; i < E1000_MC_TBL_SIZE; i++)
+        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+
+    /* Set the PCI priority bit correctly in the CTRL register.  This
+     * determines if the adapter gives priority to receives, or if it
+     * gives equal priority to transmits and receives.
+     */
+    if(hw->dma_fairness) {
+        ctrl = E1000_READ_REG(hw, CTRL);
+        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
+    }
+
+    /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
+    if(hw->bus_type == e1000_bus_type_pcix) {
+        e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+        e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+        cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
+            PCIX_COMMAND_MMRBC_SHIFT;
+        stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+            PCIX_STATUS_HI_MMRBC_SHIFT;
+        if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+            stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+        if(cmd_mmrbc > stat_mmrbc) {
+            pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
+            pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+            e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
+        }
+    }
+
+    /* Call a subroutine to configure the link and setup flow control. */
+    ret_val = e1000_setup_link(hw);
+
+    /* Set the transmit descriptor write-back policy */
+    if(hw->mac_type > e1000_82544) {
+        ctrl = E1000_READ_REG(hw, TXDCTL);
+        ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
+        E1000_WRITE_REG(hw, TXDCTL, ctrl);
+    }
+
+    /* Clear all of the statistics registers (clear on read).  It is
+     * important that we do this after we have tried to establish link
+     * because the symbol error count will increment wildly if there
+     * is no link.
+     */
+    e1000_clear_hw_cntrs(hw);
+
+    return ret_val;
+}
+
+/******************************************************************************
+ * Configures flow control and link settings.
+ * 
+ * hw - Struct containing variables accessed by shared code
+ * 
+ * Determines which flow control settings to use. Calls the apropriate media-
+ * specific link configuration function. Configures the flow control settings.
+ * Assuming the adapter has a valid link partner, a valid link should be
+ * established. Assumes the hardware has previously been reset and the 
+ * transmitter and receiver are not enabled.
+ *****************************************************************************/
+int32_t
+e1000_setup_link(struct e1000_hw *hw)
+{
+    uint32_t ctrl_ext;
+    int32_t ret_val;
+    uint16_t eeprom_data;
+
+    DEBUGFUNC("e1000_setup_link");
+
+    /* Read and store word 0x0F of the EEPROM. This word contains bits
+     * that determine the hardware's default PAUSE (flow control) mode,
+     * a bit that determines whether the HW defaults to enabling or
+     * disabling auto-negotiation, and the direction of the
+     * SW defined pins. If there is no SW over-ride of the flow
+     * control setting, then the variable hw->fc will
+     * be initialized based on a value in the EEPROM.
+     */
+    if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+
+    if(hw->fc == e1000_fc_default) {
+        if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
+            hw->fc = e1000_fc_none;
+        else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 
+                EEPROM_WORD0F_ASM_DIR)
+            hw->fc = e1000_fc_tx_pause;
+        else
+            hw->fc = e1000_fc_full;
+    }
+
+    /* We want to save off the original Flow Control configuration just
+     * in case we get disconnected and then reconnected into a different
+     * hub or switch with different Flow Control capabilities.
+     */
+    if(hw->mac_type == e1000_82542_rev2_0)
+        hw->fc &= (~e1000_fc_tx_pause);
+
+    if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+        hw->fc &= (~e1000_fc_rx_pause);
+
+    hw->original_fc = hw->fc;
+
+    DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
+
+    /* Take the 4 bits from EEPROM word 0x0F that determine the initial
+     * polarity value for the SW controlled pins, and setup the
+     * Extended Device Control reg with that info.
+     * This is needed because one of the SW controlled pins is used for
+     * signal detection.  So this should be done before e1000_setup_pcs_link()
+     * or e1000_phy_setup() is called.
+     */
+    if(hw->mac_type == e1000_82543) {
+        ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << 
+                    SWDPIO__EXT_SHIFT);
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+    }
+
+    /* Call the necessary subroutine to configure the link. */
+    ret_val = (hw->media_type == e1000_media_type_fiber) ?
+              e1000_setup_fiber_link(hw) :
+              e1000_setup_copper_link(hw);
+
+    /* Initialize the flow control address, type, and PAUSE timer
+     * registers to their default values.  This is done even if flow
+     * control is disabled, because it does not hurt anything to
+     * initialize these registers.
+     */
+    DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+
+    E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
+    E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+    E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
+    E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
+
+    /* Set the flow control receive threshold registers.  Normally,
+     * these registers will be set to a default threshold that may be
+     * adjusted later by the driver's runtime code.  However, if the
+     * ability to transmit pause frames in not enabled, then these
+     * registers will be set to 0. 
+     */
+    if(!(hw->fc & e1000_fc_tx_pause)) {
+        E1000_WRITE_REG(hw, FCRTL, 0);
+        E1000_WRITE_REG(hw, FCRTH, 0);
+    } else {
+        /* We need to set up the Receive Threshold high and low water marks
+         * as well as (optionally) enabling the transmission of XON frames.
+         */
+        if(hw->fc_send_xon) {
+            E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
+            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+        } else {
+            E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
+            E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
+        }
+    }
+    return ret_val;
+}
+
+/******************************************************************************
+ * Sets up link for a fiber based adapter
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Manipulates Physical Coding Sublayer functions in order to configure
+ * link. Assumes the hardware has been previously reset and the transmitter
+ * and receiver are not enabled.
+ *****************************************************************************/
+static int32_t 
+e1000_setup_fiber_link(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint32_t status;
+    uint32_t txcw = 0;
+    uint32_t i;
+    uint32_t signal;
+    int32_t ret_val;
+
+    DEBUGFUNC("e1000_setup_fiber_link");
+
+    /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be 
+     * set when the optics detect a signal. On older adapters, it will be 
+     * cleared when there is a signal
+     */
+    ctrl = E1000_READ_REG(hw, CTRL);
+    if(hw->mac_type > e1000_82544) signal = E1000_CTRL_SWDPIN1;
+    else signal = 0;
+   
+    /* Take the link out of reset */
+    ctrl &= ~(E1000_CTRL_LRST);
+    
+    e1000_config_collision_dist(hw);
+
+    /* Check for a software override of the flow control settings, and setup
+     * the device accordingly.  If auto-negotiation is enabled, then software
+     * will have to set the "PAUSE" bits to the correct value in the Tranmsit
+     * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
+     * auto-negotiation is disabled, then software will have to manually 
+     * configure the two flow control enable bits in the CTRL register.
+     *
+     * The possible values of the "fc" parameter are:
+     *      0:  Flow control is completely disabled
+     *      1:  Rx flow control is enabled (we can receive pause frames, but 
+     *          not send pause frames).
+     *      2:  Tx flow control is enabled (we can send pause frames but we do
+     *          not support receiving pause frames).
+     *      3:  Both Rx and TX flow control (symmetric) are enabled.
+     */
+    switch (hw->fc) {
+    case e1000_fc_none:
+        /* Flow control is completely disabled by a software over-ride. */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+        break;
+    case e1000_fc_rx_pause:
+        /* RX Flow control is enabled and TX Flow control is disabled by a 
+         * software over-ride. Since there really isn't a way to advertise 
+         * that we are capable of RX Pause ONLY, we will advertise that we
+         * support both symmetric and asymmetric RX PAUSE. Later, we will
+         *  disable the adapter's ability to send PAUSE frames.
+         */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+        break;
+    case e1000_fc_tx_pause:
+        /* TX Flow control is enabled, and RX Flow control is disabled, by a 
+         * software over-ride.
+         */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+        break;
+    case e1000_fc_full:
+        /* Flow control (both RX and TX) is enabled by a software over-ride. */
+        txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+        break;
+    default:
+        DEBUGOUT("Flow control param set incorrectly\n");
+        return -E1000_ERR_CONFIG;
+        break;
+    }
+
+    /* Since auto-negotiation is enabled, take the link out of reset (the link
+     * will be in reset, because we previously reset the chip). This will
+     * restart auto-negotiation.  If auto-neogtiation is successful then the
+     * link-up status bit will be set and the flow control enable bits (RFCE
+     * and TFCE) will be set according to their negotiated value.
+     */
+    DEBUGOUT("Auto-negotiation enabled\n");
+
+    E1000_WRITE_REG(hw, TXCW, txcw);
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    E1000_WRITE_FLUSH(hw);
+
+    hw->txcw = txcw;
+    msec_delay(1);
+
+    /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
+     * indication in the Device Status Register.  Time-out if a link isn't 
+     * seen in 500 milliseconds seconds (Auto-negotiation should complete in 
+     * less than 500 milliseconds even if the other end is doing it in SW).
+     */
+    if((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
+        DEBUGOUT("Looking for Link\n");
+        for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+            msec_delay(10);
+            status = E1000_READ_REG(hw, STATUS);
+            if(status & E1000_STATUS_LU) break;
+        }
+        if(i == (LINK_UP_TIMEOUT / 10)) {
+            /* AutoNeg failed to achieve a link, so we'll call 
+             * e1000_check_for_link. This routine will force the link up if we
+             * detect a signal. This will allow us to communicate with
+             * non-autonegotiating link partners.
+             */
+            DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+            hw->autoneg_failed = 1;
+            ret_val = e1000_check_for_link(hw);
+            if(ret_val < 0) {
+                DEBUGOUT("Error while checking for link\n");
+                return ret_val;
+            }
+            hw->autoneg_failed = 0;
+        } else {
+            hw->autoneg_failed = 0;
+            DEBUGOUT("Valid Link Found\n");
+        }
+    } else {
+        DEBUGOUT("No Signal Detected\n");
+    }
+    return 0;
+}
+
+/******************************************************************************
+* Detects which PHY is present and the speed and duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t 
+e1000_setup_copper_link(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    int32_t ret_val;
+    uint16_t i;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_setup_copper_link");
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+    /* With 82543, we need to force speed and duplex on the MAC equal to what
+     * the PHY speed and duplex configuration is. In addition, we need to
+     * perform a hardware reset on the PHY to take it out of reset.
+     */
+    if(hw->mac_type > e1000_82543) {
+        ctrl |= E1000_CTRL_SLU;
+        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+    } else {
+        ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        e1000_phy_hw_reset(hw);
+    }
+
+    /* Make sure we have a valid PHY */
+    ret_val = e1000_detect_gig_phy(hw);
+    if(ret_val < 0) {
+        DEBUGOUT("Error, did not detect valid phy.\n");
+        return ret_val;
+    }
+    DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
+
+    /* Enable CRS on TX. This must be set for half-duplex operation. */
+    if(e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+    /* Options:
+     *   MDI/MDI-X = 0 (default)
+     *   0 - Auto for all speeds
+     *   1 - MDI mode
+     *   2 - MDI-X mode
+     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+     */
+    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+    switch (hw->mdix) {
+    case 1:
+        phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+        break;
+    case 2:
+        phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+        break;
+    case 3:
+        phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+        break;
+    case 0:
+    default:
+        phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+        break;
+    }
+
+    /* Options:
+     *   disable_polarity_correction = 0 (default)
+     *       Automatic Correction for Reversed Cable Polarity
+     *   0 - Disabled
+     *   1 - Enabled
+     */
+    phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+    if(hw->disable_polarity_correction == 1)
+        phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+    if(e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    /* Force TX_CLK in the Extended PHY Specific Control Register
+     * to 25MHz clock.
+     */
+    if(e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+    if (hw->phy_revision < M88E1011_I_REV_4) {
+        /* Configure Master and Slave downshift values */
+        phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+                      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+        phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+                     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+        if(e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+            DEBUGOUT("PHY Write Error\n");
+            return -E1000_ERR_PHY;
+        }
+    }
+
+    /* SW Reset the PHY so all changes take effect */
+    ret_val = e1000_phy_reset(hw);
+    if(ret_val < 0) {
+        DEBUGOUT("Error Resetting the PHY\n");
+        return ret_val;
+    }
+    
+    /* Options:
+     *   autoneg = 1 (default)
+     *      PHY will advertise value(s) parsed from
+     *      autoneg_advertised and fc
+     *   autoneg = 0
+     *      PHY will be set to 10H, 10F, 100H, or 100F
+     *      depending on value parsed from forced_speed_duplex.
+     */
+
+    /* Is autoneg enabled?  This is enabled by default or by software override.
+     * If so, call e1000_phy_setup_autoneg routine to parse the
+     * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
+     * user should have provided a speed/duplex override.  If so, then call
+     * e1000_phy_force_speed_duplex to parse and set this up.
+     */
+    if(hw->autoneg) {
+        /* Perform some bounds checking on the hw->autoneg_advertised
+         * parameter.  If this variable is zero, then set it to the default.
+         */
+        hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+        /* If autoneg_advertised is zero, we assume it was not defaulted
+         * by the calling code so we set to advertise full capability.
+         */
+        if(hw->autoneg_advertised == 0)
+            hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+
+        DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+        ret_val = e1000_phy_setup_autoneg(hw);
+        if(ret_val < 0) {
+            DEBUGOUT("Error Setting up Auto-Negotiation\n");
+            return ret_val;
+        }
+        DEBUGOUT("Restarting Auto-Neg\n");
+
+        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+         * the Auto Neg Restart bit in the PHY control register.
+         */
+        if(e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+        phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+        if(e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+            DEBUGOUT("PHY Write Error\n");
+            return -E1000_ERR_PHY;
+        }
+
+        /* Does the user want to wait for Auto-Neg to complete here, or
+         * check at a later time (for example, callback routine).
+         */
+        if(hw->wait_autoneg_complete) {
+            ret_val = e1000_wait_autoneg(hw);
+            if(ret_val < 0) {
+                DEBUGOUT("Error while waiting for autoneg to complete\n");
+                return ret_val;
+            }
+        }
+    } else {
+        DEBUGOUT("Forcing speed and duplex\n");
+        ret_val = e1000_phy_force_speed_duplex(hw);
+        if(ret_val < 0) {
+            DEBUGOUT("Error Forcing Speed and Duplex\n");
+            return ret_val;
+        }
+    }
+
+    /* Check link status. Wait up to 100 microseconds for link to become
+     * valid.
+     */
+    for(i = 0; i < 10; i++) {
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+        if(phy_data & MII_SR_LINK_STATUS) {
+            /* We have link, so we need to finish the config process:
+             *   1) Set up the MAC to the current PHY speed/duplex
+             *      if we are on 82543.  If we
+             *      are on newer silicon, we only need to configure
+             *      collision distance in the Transmit Control Register.
+             *   2) Set up flow control on the MAC to that established with
+             *      the link partner.
+             */
+            if(hw->mac_type >= e1000_82544) {
+                e1000_config_collision_dist(hw);
+            } else {
+                ret_val = e1000_config_mac_to_phy(hw);
+                if(ret_val < 0) {
+                    DEBUGOUT("Error configuring MAC to PHY settings\n");
+                    return ret_val;
+                  }
+            }
+            ret_val = e1000_config_fc_after_link_up(hw);
+            if(ret_val < 0) {
+                DEBUGOUT("Error Configuring Flow Control\n");
+                return ret_val;
+            }
+            DEBUGOUT("Valid link established!!!\n");
+            return 0;
+        }
+        udelay(10);
+    }
+
+    DEBUGOUT("Unable to establish link!!!\n");
+    return 0;
+}
+
+/******************************************************************************
+* Configures PHY autoneg and flow control advertisement settings
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+    uint16_t mii_autoneg_adv_reg;
+    uint16_t mii_1000t_ctrl_reg;
+
+    DEBUGFUNC("e1000_phy_setup_autoneg");
+
+    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+    if(e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    /* Read the MII 1000Base-T Control Register (Address 9). */
+    if(e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    /* Need to parse both autoneg_advertised and fc and set up
+     * the appropriate PHY registers.  First we will parse for
+     * autoneg_advertised software override.  Since we can advertise
+     * a plethora of combinations, we need to check each bit
+     * individually.
+     */
+
+    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+     * Advertisement Register (Address 4) and the 1000 mb speed bits in
+     * the  1000Base-T Control Register (Address 9).
+     */
+    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
+    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
+
+    DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
+
+    /* Do we want to advertise 10 Mb Half Duplex? */
+    if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
+        DEBUGOUT("Advertise 10mb Half duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+    }
+
+    /* Do we want to advertise 10 Mb Full Duplex? */
+    if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
+        DEBUGOUT("Advertise 10mb Full duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+    }
+
+    /* Do we want to advertise 100 Mb Half Duplex? */
+    if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
+        DEBUGOUT("Advertise 100mb Half duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+    }
+
+    /* Do we want to advertise 100 Mb Full Duplex? */
+    if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
+        DEBUGOUT("Advertise 100mb Full duplex\n");
+        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+    }
+
+    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+    if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
+    }
+
+    /* Do we want to advertise 1000 Mb Full Duplex? */
+    if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+        DEBUGOUT("Advertise 1000mb Full duplex\n");
+        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+    }
+
+    /* Check for a software override of the flow control settings, and
+     * setup the PHY advertisement registers accordingly.  If
+     * auto-negotiation is enabled, then software will have to set the
+     * "PAUSE" bits to the correct value in the Auto-Negotiation
+     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
+     *
+     * The possible values of the "fc" parameter are:
+     *      0:  Flow control is completely disabled
+     *      1:  Rx flow control is enabled (we can receive pause frames
+     *          but not send pause frames).
+     *      2:  Tx flow control is enabled (we can send pause frames
+     *          but we do not support receiving pause frames).
+     *      3:  Both Rx and TX flow control (symmetric) are enabled.
+     *  other:  No software override.  The flow control configuration
+     *          in the EEPROM is used.
+     */
+    switch (hw->fc) {
+    case e1000_fc_none: /* 0 */
+        /* Flow control (RX & TX) is completely disabled by a
+         * software over-ride.
+         */
+        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+        break;
+    case e1000_fc_rx_pause: /* 1 */
+        /* RX Flow control is enabled, and TX Flow control is
+         * disabled, by a software over-ride.
+         */
+        /* Since there really isn't a way to advertise that we are
+         * capable of RX Pause ONLY, we will advertise that we
+         * support both symmetric and asymmetric RX PAUSE.  Later
+         * (in e1000_config_fc_after_link_up) we will disable the
+         *hw's ability to send PAUSE frames.
+         */
+        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+        break;
+    case e1000_fc_tx_pause: /* 2 */
+        /* TX Flow control is enabled, and RX Flow control is
+         * disabled, by a software over-ride.
+         */
+        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+        break;
+    case e1000_fc_full: /* 3 */
+        /* Flow control (both RX and TX) is enabled by a software
+         * over-ride.
+         */
+        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+        break;
+    default:
+        DEBUGOUT("Flow control param set incorrectly\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    if(e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+    if(e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+    return 0;
+}
+
+/******************************************************************************
+* Force PHY speed and duplex settings to hw->forced_speed_duplex
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    int32_t ret_val;
+    uint16_t mii_ctrl_reg;
+    uint16_t mii_status_reg;
+    uint16_t phy_data;
+    uint16_t i;
+
+    DEBUGFUNC("e1000_phy_force_speed_duplex");
+
+    /* Turn off Flow control if we are forcing speed and duplex. */
+    hw->fc = e1000_fc_none;
+
+    DEBUGOUT1("hw->fc = %d\n", hw->fc);
+
+    /* Read the Device Control Register. */
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
+    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+    ctrl &= ~(DEVICE_SPEED_MASK);
+
+    /* Clear the Auto Speed Detect Enable bit. */
+    ctrl &= ~E1000_CTRL_ASDE;
+
+    /* Read the MII Control Register. */
+    if(e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    /* We need to disable autoneg in order to force link and duplex. */
+
+    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
+
+    /* Are we forcing Full or Half Duplex? */
+    if(hw->forced_speed_duplex == e1000_100_full ||
+       hw->forced_speed_duplex == e1000_10_full) {
+        /* We want to force full duplex so we SET the full duplex bits in the
+         * Device and MII Control Registers.
+         */
+        ctrl |= E1000_CTRL_FD;
+        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
+        DEBUGOUT("Full Duplex\n");
+    } else {
+        /* We want to force half duplex so we CLEAR the full duplex bits in
+         * the Device and MII Control Registers.
+         */
+        ctrl &= ~E1000_CTRL_FD;
+        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
+        DEBUGOUT("Half Duplex\n");
+    }
+
+    /* Are we forcing 100Mbps??? */
+    if(hw->forced_speed_duplex == e1000_100_full ||
+       hw->forced_speed_duplex == e1000_100_half) {
+        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
+        ctrl |= E1000_CTRL_SPD_100;
+        mii_ctrl_reg |= MII_CR_SPEED_100;
+        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+        DEBUGOUT("Forcing 100mb ");
+    } else {
+        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
+        ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+        mii_ctrl_reg |= MII_CR_SPEED_10;
+        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+        DEBUGOUT("Forcing 10mb ");
+    }
+
+    e1000_config_collision_dist(hw);
+
+    /* Write the configured values back to the Device Control Reg. */
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+
+    if(e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+     * forced whenever speed are duplex are forced.
+     */
+    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+    if(e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+    DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
+
+    /* Need to reset the PHY or these changes will be ignored */
+    mii_ctrl_reg |= MII_CR_RESET;
+
+    /* Write back the modified PHY MII control register. */
+    if(e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+    udelay(1);
+
+    /* The wait_autoneg_complete flag may be a little misleading here.
+     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
+     * But we do want to delay for a period while forcing only so we
+     * don't generate false No Link messages.  So we will wait here
+     * only if the user has set wait_autoneg_complete to 1, which is
+     * the default.
+     */
+    if(hw->wait_autoneg_complete) {
+        /* We will wait for autoneg to complete. */
+        DEBUGOUT("Waiting for forced speed/duplex link.\n");
+        mii_status_reg = 0;
+
+        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+        for(i = PHY_FORCE_TIME; i > 0; i--) {
+            /* Read the MII Status Register and wait for Auto-Neg Complete bit
+             * to be set.
+             */
+            if(e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+            if(e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+            if(mii_status_reg & MII_SR_LINK_STATUS) break;
+            msec_delay(100);
+        }
+        if(i == 0) { /* We didn't get link */
+            /* Reset the DSP and wait again for link. */
+            
+            ret_val = e1000_phy_reset_dsp(hw);
+            if(ret_val < 0) {
+                DEBUGOUT("Error Resetting PHY DSP\n");
+                return ret_val;
+            }
+        }
+        /* This loop will early-out if the link condition has been met.  */
+        for(i = PHY_FORCE_TIME; i > 0; i--) {
+            if(mii_status_reg & MII_SR_LINK_STATUS) break;
+            msec_delay(100);
+            /* Read the MII Status Register and wait for Auto-Neg Complete bit
+             * to be set.
+             */
+            if(e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+            if(e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+        }
+    }
+    
+    /* Because we reset the PHY above, we need to re-force TX_CLK in the
+     * Extended PHY Specific Control Register to 25MHz clock.  This value
+     * defaults back to a 2.5MHz clock when the PHY is reset.
+     */
+    if(e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    phy_data |= M88E1000_EPSCR_TX_CLK_25;
+    if(e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+
+    /* In addition, because of the s/w reset above, we need to enable CRS on
+     * TX.  This must be set for both full and half duplex operation.
+     */
+    if(e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+    if(e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+    return 0;
+}
+
+/******************************************************************************
+* Sets the collision distance in the Transmit Control register
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Link should have been established previously. Reads the speed and duplex
+* information from the Device Status register.
+******************************************************************************/
+void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+    uint32_t tctl;
+
+    tctl = E1000_READ_REG(hw, TCTL);
+
+    tctl &= ~E1000_TCTL_COLD;
+    tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+    E1000_WRITE_REG(hw, TCTL, tctl);
+    E1000_WRITE_FLUSH(hw);
+}
+
+/******************************************************************************
+* Sets MAC speed and duplex settings to reflect the those in the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* mii_reg - data to write to the MII control register
+*
+* The contents of the PHY register containing the needed information need to
+* be passed in.
+******************************************************************************/
+static int32_t
+e1000_config_mac_to_phy(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_config_mac_to_phy");
+
+    /* Read the Device Control Register and set the bits to Force Speed
+     * and Duplex.
+     */
+    ctrl = E1000_READ_REG(hw, CTRL);
+    ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+    ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
+
+    /* Set up duplex in the Device Control and Transmit Control
+     * registers depending on negotiated values.
+     */
+    if(e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
+    else ctrl &= ~E1000_CTRL_FD;
+
+    e1000_config_collision_dist(hw);
+
+    /* Set up speed in the Device Control register depending on
+     * negotiated values.
+     */
+    if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+        ctrl |= E1000_CTRL_SPD_1000;
+    else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+        ctrl |= E1000_CTRL_SPD_100;
+    /* Write the configured values back to the Device Control Reg. */
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    return 0;
+}
+
+/******************************************************************************
+ * Forces the MAC's flow control settings.
+ * 
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sets the TFCE and RFCE bits in the device control register to reflect
+ * the adapter settings. TFCE and RFCE need to be explicitly set by
+ * software when a Copper PHY is used because autonegotiation is managed
+ * by the PHY rather than the MAC. Software must also configure these
+ * bits when link is forced on a fiber connection.
+ *****************************************************************************/
+static int32_t
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+
+    DEBUGFUNC("e1000_force_mac_fc");
+
+    /* Get the current configuration of the Device Control Register */
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Because we didn't get link via the internal auto-negotiation
+     * mechanism (we either forced link or we got link via PHY
+     * auto-neg), we have to manually enable/disable transmit an
+     * receive flow control.
+     *
+     * The "Case" statement below enables/disable flow control
+     * according to the "hw->fc" parameter.
+     *
+     * The possible values of the "fc" parameter are:
+     *      0:  Flow control is completely disabled
+     *      1:  Rx flow control is enabled (we can receive pause
+     *          frames but not send pause frames).
+     *      2:  Tx flow control is enabled (we can send pause frames
+     *          frames but we do not receive pause frames).
+     *      3:  Both Rx and TX flow control (symmetric) is enabled.
+     *  other:  No other values should be possible at this point.
+     */
+
+    switch (hw->fc) {
+    case e1000_fc_none:
+        ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+        break;
+    case e1000_fc_rx_pause:
+        ctrl &= (~E1000_CTRL_TFCE);
+        ctrl |= E1000_CTRL_RFCE;
+        break;
+    case e1000_fc_tx_pause:
+        ctrl &= (~E1000_CTRL_RFCE);
+        ctrl |= E1000_CTRL_TFCE;
+        break;
+    case e1000_fc_full:
+        ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+        break;
+    default:
+        DEBUGOUT("Flow control param set incorrectly\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    /* Disable TX Flow Control for 82542 (rev 2.0) */
+    if(hw->mac_type == e1000_82542_rev2_0)
+        ctrl &= (~E1000_CTRL_TFCE);
+
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    return 0;
+}
+
+/******************************************************************************
+ * Configures flow control settings after link is established
+ * 
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Should be called immediately after a valid link has been established.
+ * Forces MAC flow control settings if link was forced. When in MII/GMII mode
+ * and autonegotiation is enabled, the MAC flow control settings will be set
+ * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
+ * and RFCE bits will be automaticaly set to the negotiated flow control mode.
+ *****************************************************************************/
+int32_t
+e1000_config_fc_after_link_up(struct e1000_hw *hw)
+{
+    int32_t ret_val;
+    uint16_t mii_status_reg;
+    uint16_t mii_nway_adv_reg;
+    uint16_t mii_nway_lp_ability_reg;
+    uint16_t speed;
+    uint16_t duplex;
+
+    DEBUGFUNC("e1000_config_fc_after_link_up");
+
+    /* Check for the case where we have fiber media and auto-neg failed
+     * so we had to force link.  In this case, we need to force the
+     * configuration of the MAC to match the "fc" parameter.
+     */
+    if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
+       ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
+        ret_val = e1000_force_mac_fc(hw);
+        if(ret_val < 0) {
+            DEBUGOUT("Error forcing flow control settings\n");
+            return ret_val;
+        }
+    }
+
+    /* Check for the case where we have copper media and auto-neg is
+     * enabled.  In this case, we need to check and see if Auto-Neg
+     * has completed, and if so, how the PHY and link partner has
+     * flow control configured.
+     */
+    if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+        /* Read the MII Status Register and check to see if AutoNeg
+         * has completed.  We read this twice because this reg has
+         * some "sticky" (latched) bits.
+         */
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+            DEBUGOUT("PHY Read Error \n");
+            return -E1000_ERR_PHY;
+        }
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
+            DEBUGOUT("PHY Read Error \n");
+            return -E1000_ERR_PHY;
+        }
+
+        if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+            /* The AutoNeg process has completed, so we now need to
+             * read both the Auto Negotiation Advertisement Register
+             * (Address 4) and the Auto_Negotiation Base Page Ability
+             * Register (Address 5) to determine how flow control was
+             * negotiated.
+             */
+            if(e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+            if(e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+
+            /* Two bits in the Auto Negotiation Advertisement Register
+             * (Address 4) and two bits in the Auto Negotiation Base
+             * Page Ability Register (Address 5) determine flow control
+             * for both the PHY and the link partner.  The following
+             * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+             * 1999, describes these PAUSE resolution bits and how flow
+             * control is determined based upon these settings.
+             * NOTE:  DC = Don't Care
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+             *-------|---------|-------|---------|--------------------
+             *   0   |    0    |  DC   |   DC    | e1000_fc_none
+             *   0   |    1    |   0   |   DC    | e1000_fc_none
+             *   0   |    1    |   1   |    0    | e1000_fc_none
+             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+             *   1   |    0    |   0   |   DC    | e1000_fc_none
+             *   1   |   DC    |   1   |   DC    | e1000_fc_full
+             *   1   |    1    |   0   |    0    | e1000_fc_none
+             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+             *
+             */
+            /* Are both PAUSE bits set to 1?  If so, this implies
+             * Symmetric Flow Control is enabled at both ends.  The
+             * ASM_DIR bits are irrelevant per the spec.
+             *
+             * For Symmetric Flow Control:
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+             *-------|---------|-------|---------|--------------------
+             *   1   |   DC    |   1   |   DC    | e1000_fc_full
+             *
+             */
+            if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+               (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+                /* Now we need to check if the user selected RX ONLY
+                 * of pause frames.  In this case, we had to advertise
+                 * FULL flow control because we could not advertise RX
+                 * ONLY. Hence, we must now check to see if we need to
+                 * turn OFF  the TRANSMISSION of PAUSE frames.
+                 */
+                if(hw->original_fc == e1000_fc_full) {
+                    hw->fc = e1000_fc_full;
+                    DEBUGOUT("Flow Control = FULL.\r\n");
+                } else {
+                    hw->fc = e1000_fc_rx_pause;
+                    DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+                }
+            }
+            /* For receiving PAUSE frames ONLY.
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+             *-------|---------|-------|---------|--------------------
+             *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+             *
+             */
+            else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+                hw->fc = e1000_fc_tx_pause;
+                DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+            }
+            /* For transmitting PAUSE frames ONLY.
+             *
+             *   LOCAL DEVICE  |   LINK PARTNER
+             * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+             *-------|---------|-------|---------|--------------------
+             *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+             *
+             */
+            else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                    (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                    !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                    (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+                hw->fc = e1000_fc_rx_pause;
+                DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+            }
+            /* Per the IEEE spec, at this point flow control should be
+             * disabled.  However, we want to consider that we could
+             * be connected to a legacy switch that doesn't advertise
+             * desired flow control, but can be forced on the link
+             * partner.  So if we advertised no flow control, that is
+             * what we will resolve to.  If we advertised some kind of
+             * receive capability (Rx Pause Only or Full Flow Control)
+             * and the link partner advertised none, we will configure
+             * ourselves to enable Rx Flow Control only.  We can do
+             * this safely for two reasons:  If the link partner really
+             * didn't want flow control enabled, and we enable Rx, no
+             * harm done since we won't be receiving any PAUSE frames
+             * anyway.  If the intent on the link partner was to have
+             * flow control enabled, then by us enabling RX only, we
+             * can at least receive pause frames and process them.
+             * This is a good idea because in most cases, since we are
+             * predominantly a server NIC, more times than not we will
+             * be asked to delay transmission of packets than asking
+             * our link partner to pause transmission of frames.
+             */
+            else if(hw->original_fc == e1000_fc_none ||
+                    hw->original_fc == e1000_fc_tx_pause) {
+                hw->fc = e1000_fc_none;
+                DEBUGOUT("Flow Control = NONE.\r\n");
+            } else {
+                hw->fc = e1000_fc_rx_pause;
+                DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+            }
+
+            /* Now we need to do one last check...  If we auto-
+             * negotiated to HALF DUPLEX, flow control should not be
+             * enabled per IEEE 802.3 spec.
+             */
+            e1000_get_speed_and_duplex(hw, &speed, &duplex);
+
+            if(duplex == HALF_DUPLEX)
+                hw->fc = e1000_fc_none;
+
+            /* Now we call a subroutine to actually force the MAC
+             * controller to use the correct flow control settings.
+             */
+            ret_val = e1000_force_mac_fc(hw);
+            if(ret_val < 0) {
+                DEBUGOUT("Error forcing flow control settings\n");
+                return ret_val;
+             }
+        } else {
+            DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
+        }
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Checks to see if the link status of the hardware has changed.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Called by any function that needs to check the link status of the adapter.
+ *****************************************************************************/
+int32_t
+e1000_check_for_link(struct e1000_hw *hw)
+{
+    uint32_t rxcw;
+    uint32_t ctrl;
+    uint32_t status;
+    uint32_t rctl;
+    uint32_t signal;
+    int32_t ret_val;
+    uint16_t phy_data;
+    uint16_t lp_capability;
+
+    DEBUGFUNC("e1000_check_for_link");
+    
+    /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be 
+     * set when the optics detect a signal. On older adapters, it will be 
+     * cleared when there is a signal
+     */
+    if(hw->mac_type > e1000_82544) signal = E1000_CTRL_SWDPIN1;
+    else signal = 0;
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+    status = E1000_READ_REG(hw, STATUS);
+    rxcw = E1000_READ_REG(hw, RXCW);
+
+    /* If we have a copper PHY then we only want to go out to the PHY
+     * registers to see if Auto-Neg has completed and/or if our link
+     * status has changed.  The get_link_status flag will be set if we
+     * receive a Link Status Change interrupt or we have Rx Sequence
+     * Errors.
+     */
+    if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+        /* First we want to see if the MII Status Register reports
+         * link.  If so, then we want to get the current speed/duplex
+         * of the PHY.
+         * Read the register twice since the link bit is sticky.
+         */
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+
+        if(phy_data & MII_SR_LINK_STATUS) {
+            hw->get_link_status = FALSE;
+        } else {
+            /* No link detected */
+            return 0;
+        }
+
+        /* If we are forcing speed/duplex, then we simply return since
+         * we have already determined whether we have link or not.
+         */
+        if(!hw->autoneg) return -E1000_ERR_CONFIG;
+
+        /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
+         * have Si on board that is 82544 or newer, Auto
+         * Speed Detection takes care of MAC speed/duplex
+         * configuration.  So we only need to configure Collision
+         * Distance in the MAC.  Otherwise, we need to force
+         * speed/duplex on the MAC to the current PHY speed/duplex
+         * settings.
+         */
+        if(hw->mac_type >= e1000_82544)
+            e1000_config_collision_dist(hw);
+        else {
+            ret_val = e1000_config_mac_to_phy(hw);
+            if(ret_val < 0) {
+                DEBUGOUT("Error configuring MAC to PHY settings\n");
+                return ret_val;
+            }
+        }
+
+        /* Configure Flow Control now that Auto-Neg has completed. First, we 
+         * need to restore the desired flow control settings because we may
+         * have had to re-autoneg with a different link partner.
+         */
+        ret_val = e1000_config_fc_after_link_up(hw);
+        if(ret_val < 0) {
+            DEBUGOUT("Error configuring flow control\n");
+            return ret_val;
+        }
+
+        /* At this point we know that we are on copper and we have
+         * auto-negotiated link.  These are conditions for checking the link
+         * parter capability register.  We use the link partner capability to
+         * determine if TBI Compatibility needs to be turned on or off.  If
+         * the link partner advertises any speed in addition to Gigabit, then
+         * we assume that they are GMII-based, and TBI compatibility is not
+         * needed. If no other speeds are advertised, we assume the link
+         * partner is TBI-based, and we turn on TBI Compatibility.
+         */
+        if(hw->tbi_compatibility_en) {
+            if(e1000_read_phy_reg(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
+                DEBUGOUT("PHY Read Error\n");
+                return -E1000_ERR_PHY;
+            }
+            if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
+                                NWAY_LPAR_10T_FD_CAPS |
+                                NWAY_LPAR_100TX_HD_CAPS |
+                                NWAY_LPAR_100TX_FD_CAPS |
+                                NWAY_LPAR_100T4_CAPS)) {
+                /* If our link partner advertises anything in addition to 
+                 * gigabit, we do not need to enable TBI compatibility.
+                 */
+                if(hw->tbi_compatibility_on) {
+                    /* If we previously were in the mode, turn it off. */
+                    rctl = E1000_READ_REG(hw, RCTL);
+                    rctl &= ~E1000_RCTL_SBP;
+                    E1000_WRITE_REG(hw, RCTL, rctl);
+                    hw->tbi_compatibility_on = FALSE;
+                }
+            } else {
+                /* If TBI compatibility is was previously off, turn it on. For
+                 * compatibility with a TBI link partner, we will store bad
+                 * packets. Some frames have an additional byte on the end and
+                 * will look like CRC errors to to the hardware.
+                 */
+                if(!hw->tbi_compatibility_on) {
+                    hw->tbi_compatibility_on = TRUE;
+                    rctl = E1000_READ_REG(hw, RCTL);
+                    rctl |= E1000_RCTL_SBP;
+                    E1000_WRITE_REG(hw, RCTL, rctl);
+                }
+            }
+        }
+    }
+    /* If we don't have link (auto-negotiation failed or link partner cannot
+     * auto-negotiate), the cable is plugged in (we have signal), and our
+     * link partner is not trying to auto-negotiate with us (we are receiving
+     * idles or data), we need to force link up. We also need to give
+     * auto-negotiation time to complete, in case the cable was just plugged
+     * in. The autoneg_failed flag does this.
+     */
+    else if((hw->media_type == e1000_media_type_fiber) &&
+            (!(status & E1000_STATUS_LU)) &&
+            ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
+            (!(rxcw & E1000_RXCW_C))) {
+        if(hw->autoneg_failed == 0) {
+            hw->autoneg_failed = 1;
+            return 0;
+        }
+        DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
+
+        /* Disable auto-negotiation in the TXCW register */
+        E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
+
+        /* Force link-up and also force full-duplex. */
+        ctrl = E1000_READ_REG(hw, CTRL);
+        ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+
+        /* Configure Flow Control after forcing link up. */
+        ret_val = e1000_config_fc_after_link_up(hw);
+        if(ret_val < 0) {
+            DEBUGOUT("Error configuring flow control\n");
+            return ret_val;
+        }
+    }
+    /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
+     * auto-negotiation in the TXCW register and disable forced link in the
+     * Device Control register in an attempt to auto-negotiate with our link
+     * partner.
+     */
+    else if((hw->media_type == e1000_media_type_fiber) &&
+              (ctrl & E1000_CTRL_SLU) &&
+              (rxcw & E1000_RXCW_C)) {
+        DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
+        E1000_WRITE_REG(hw, TXCW, hw->txcw);
+        E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Detects the current speed and duplex settings of the hardware.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * speed - Speed of the connection
+ * duplex - Duplex setting of the connection
+ *****************************************************************************/
+void
+e1000_get_speed_and_duplex(struct e1000_hw *hw,
+                           uint16_t *speed,
+                           uint16_t *duplex)
+{
+    uint32_t status;
+
+    DEBUGFUNC("e1000_get_speed_and_duplex");
+
+    if(hw->mac_type >= e1000_82543) {
+        status = E1000_READ_REG(hw, STATUS);
+        if(status & E1000_STATUS_SPEED_1000) {
+            *speed = SPEED_1000;
+            DEBUGOUT("1000 Mbs, ");
+        } else if(status & E1000_STATUS_SPEED_100) {
+            *speed = SPEED_100;
+            DEBUGOUT("100 Mbs, ");
+        } else {
+            *speed = SPEED_10;
+            DEBUGOUT("10 Mbs, ");
+        }
+
+        if(status & E1000_STATUS_FD) {
+            *duplex = FULL_DUPLEX;
+            DEBUGOUT("Full Duplex\r\n");
+        } else {
+            *duplex = HALF_DUPLEX;
+            DEBUGOUT(" Half Duplex\r\n");
+        }
+    } else {
+        DEBUGOUT("1000 Mbs, Full Duplex\r\n");
+        *speed = SPEED_1000;
+        *duplex = FULL_DUPLEX;
+    }
+}
+
+/******************************************************************************
+* Blocks until autoneg completes or times out (~4.5 seconds)
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+    uint16_t i;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_wait_autoneg");
+    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
+
+    /* We will wait for autoneg to complete or 4.5 seconds to expire. */
+    for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+        /* Read the MII Status Register and wait for Auto-Neg
+         * Complete bit to be set.
+         */
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
+            DEBUGOUT("PHY Read Error\n");
+            return -E1000_ERR_PHY;
+        }
+        if(phy_data & MII_SR_AUTONEG_COMPLETE) {
+            return 0;
+        }
+        msec_delay(100);
+    }
+    return 0;
+}
+
+/******************************************************************************
+* Raises the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_raise_mdi_clk(struct e1000_hw *hw,
+                    uint32_t *ctrl)
+{
+    /* Raise the clock input to the Management Data Clock (by setting the MDC
+     * bit), and then delay 2 microseconds.
+     */
+    E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
+    E1000_WRITE_FLUSH(hw);
+    udelay(2);
+}
+
+/******************************************************************************
+* Lowers the Management Data Clock
+*
+* hw - Struct containing variables accessed by shared code
+* ctrl - Device control register's current value
+******************************************************************************/
+static void
+e1000_lower_mdi_clk(struct e1000_hw *hw,
+                    uint32_t *ctrl)
+{
+    /* Lower the clock input to the Management Data Clock (by clearing the MDC
+     * bit), and then delay 2 microseconds.
+     */
+    E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
+    E1000_WRITE_FLUSH(hw);
+    udelay(2);
+}
+
+/******************************************************************************
+* Shifts data bits out to the PHY
+*
+* hw - Struct containing variables accessed by shared code
+* data - Data to send out to the PHY
+* count - Number of bits to shift out
+*
+* Bits are shifted out in MSB to LSB order.
+******************************************************************************/
+static void
+e1000_shift_out_mdi_bits(struct e1000_hw *hw,
+                         uint32_t data,
+                         uint16_t count)
+{
+    uint32_t ctrl;
+    uint32_t mask;
+
+    /* We need to shift "count" number of bits out to the PHY. So, the value
+     * in the "data" parameter will be shifted out to the PHY one bit at a 
+     * time. In order to do this, "data" must be broken down into bits.
+     */
+    mask = 0x01;
+    mask <<= (count - 1);
+
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
+    ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
+
+    while(mask) {
+        /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
+         * then raising and lowering the Management Data Clock. A "0" is
+         * shifted out to the PHY by setting the MDIO bit to "0" and then
+         * raising and lowering the clock.
+         */
+        if(data & mask) ctrl |= E1000_CTRL_MDIO;
+        else ctrl &= ~E1000_CTRL_MDIO;
+
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        E1000_WRITE_FLUSH(hw);
+
+        udelay(2);
+
+        e1000_raise_mdi_clk(hw, &ctrl);
+        e1000_lower_mdi_clk(hw, &ctrl);
+
+        mask = mask >> 1;
+    }
+}
+
+/******************************************************************************
+* Shifts data bits in from the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Bits are shifted in in MSB to LSB order. 
+******************************************************************************/
+static uint16_t
+e1000_shift_in_mdi_bits(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint16_t data = 0;
+    uint8_t i;
+
+    /* In order to read a register from the PHY, we need to shift in a total
+     * of 18 bits from the PHY. The first two bit (turnaround) times are used
+     * to avoid contention on the MDIO pin when a read operation is performed.
+     * These two bits are ignored by us and thrown away. Bits are "shifted in"
+     * by raising the input to the Management Data Clock (setting the MDC bit),
+     * and then reading the value of the MDIO bit.
+     */ 
+    ctrl = E1000_READ_REG(hw, CTRL);
+
+    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
+    ctrl &= ~E1000_CTRL_MDIO_DIR;
+    ctrl &= ~E1000_CTRL_MDIO;
+
+    E1000_WRITE_REG(hw, CTRL, ctrl);
+    E1000_WRITE_FLUSH(hw);
+
+    /* Raise and Lower the clock before reading in the data. This accounts for
+     * the turnaround bits. The first clock occurred when we clocked out the
+     * last bit of the Register Address.
+     */
+    e1000_raise_mdi_clk(hw, &ctrl);
+    e1000_lower_mdi_clk(hw, &ctrl);
+
+    for(data = 0, i = 0; i < 16; i++) {
+        data = data << 1;
+        e1000_raise_mdi_clk(hw, &ctrl);
+        ctrl = E1000_READ_REG(hw, CTRL);
+        /* Check to see if we shifted in a "1". */
+        if(ctrl & E1000_CTRL_MDIO) data |= 1;
+        e1000_lower_mdi_clk(hw, &ctrl);
+    }
+
+    e1000_raise_mdi_clk(hw, &ctrl);
+    e1000_lower_mdi_clk(hw, &ctrl);
+
+    return data;
+}
+
+/*****************************************************************************
+* Reads the value from a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to read
+******************************************************************************/
+int32_t
+e1000_read_phy_reg(struct e1000_hw *hw,
+                   uint32_t reg_addr,
+                   uint16_t *phy_data)
+{
+    uint32_t i;
+    uint32_t mdic = 0;
+    const uint32_t phy_addr = 1;
+
+    DEBUGFUNC("e1000_read_phy_reg");
+
+    if(reg_addr > MAX_PHY_REG_ADDRESS) {
+        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+        return -E1000_ERR_PARAM;
+    }
+
+    if(hw->mac_type > e1000_82543) {
+        /* Set up Op-code, Phy Address, and register address in the MDI
+         * Control register.  The MAC will take care of interfacing with the
+         * PHY to retrieve the desired data.
+         */
+        mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
+                (phy_addr << E1000_MDIC_PHY_SHIFT) | 
+                (E1000_MDIC_OP_READ));
+
+        E1000_WRITE_REG(hw, MDIC, mdic);
+
+        /* Poll the ready bit to see if the MDI read completed */
+        for(i = 0; i < 64; i++) {
+            udelay(10);
+            mdic = E1000_READ_REG(hw, MDIC);
+            if(mdic & E1000_MDIC_READY) break;
+        }
+        if(!(mdic & E1000_MDIC_READY)) {
+            DEBUGOUT("MDI Read did not complete\n");
+            return -E1000_ERR_PHY;
+        }
+        if(mdic & E1000_MDIC_ERROR) {
+            DEBUGOUT("MDI Error\n");
+            return -E1000_ERR_PHY;
+        }
+        *phy_data = (uint16_t) mdic;
+    } else {
+        /* We must first send a preamble through the MDIO pin to signal the
+         * beginning of an MII instruction.  This is done by sending 32
+         * consecutive "1" bits.
+         */
+        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+        /* Now combine the next few fields that are required for a read
+         * operation.  We use this method instead of calling the
+         * e1000_shift_out_mdi_bits routine five different times. The format of
+         * a MII read instruction consists of a shift out of 14 bits and is
+         * defined as follows:
+         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
+         * followed by a shift in of 18 bits.  This first two bits shifted in
+         * are TurnAround bits used to avoid contention on the MDIO pin when a
+         * READ operation is performed.  These two bits are thrown away
+         * followed by a shift in of 16 bits which contains the desired data.
+         */
+        mdic = ((reg_addr) | (phy_addr << 5) | 
+                (PHY_OP_READ << 10) | (PHY_SOF << 12));
+
+        e1000_shift_out_mdi_bits(hw, mdic, 14);
+
+        /* Now that we've shifted out the read command to the MII, we need to
+         * "shift in" the 16-bit value (18 total bits) of the requested PHY
+         * register address.
+         */
+        *phy_data = e1000_shift_in_mdi_bits(hw);
+    }
+    return 0;
+}
+
+/******************************************************************************
+* Writes a value to a PHY register
+*
+* hw - Struct containing variables accessed by shared code
+* reg_addr - address of the PHY register to write
+* data - data to write to the PHY
+******************************************************************************/
+int32_t
+e1000_write_phy_reg(struct e1000_hw *hw,
+                    uint32_t reg_addr,
+                    uint16_t phy_data)
+{
+    uint32_t i;
+    uint32_t mdic = 0;
+    const uint32_t phy_addr = 1;
+
+    DEBUGFUNC("e1000_write_phy_reg");
+
+    if(reg_addr > MAX_PHY_REG_ADDRESS) {
+        DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
+        return -E1000_ERR_PARAM;
+    }
+
+    if(hw->mac_type > e1000_82543) {
+        /* Set up Op-code, Phy Address, register address, and data intended
+         * for the PHY register in the MDI Control register.  The MAC will take
+         * care of interfacing with the PHY to send the desired data.
+         */
+        mdic = (((uint32_t) phy_data) |
+                (reg_addr << E1000_MDIC_REG_SHIFT) |
+                (phy_addr << E1000_MDIC_PHY_SHIFT) | 
+                (E1000_MDIC_OP_WRITE));
+
+        E1000_WRITE_REG(hw, MDIC, mdic);
+
+        /* Poll the ready bit to see if the MDI read completed */
+        for(i = 0; i < 64; i++) {
+            udelay(10);
+            mdic = E1000_READ_REG(hw, MDIC);
+            if(mdic & E1000_MDIC_READY) break;
+        }
+        if(!(mdic & E1000_MDIC_READY)) {
+            DEBUGOUT("MDI Write did not complete\n");
+            return -E1000_ERR_PHY;
+        }
+    } else {
+        /* We'll need to use the SW defined pins to shift the write command
+         * out to the PHY. We first send a preamble to the PHY to signal the
+         * beginning of the MII instruction.  This is done by sending 32 
+         * consecutive "1" bits.
+         */
+        e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
+
+        /* Now combine the remaining required fields that will indicate a 
+         * write operation. We use this method instead of calling the
+         * e1000_shift_out_mdi_bits routine for each field in the command. The
+         * format of a MII write instruction is as follows:
+         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
+         */
+        mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
+                (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
+        mdic <<= 16;
+        mdic |= (uint32_t) phy_data;
+
+        e1000_shift_out_mdi_bits(hw, mdic, 32);
+    }
+    return 0;
+}
+
+/******************************************************************************
+* Returns the PHY to the power-on reset state
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+void
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+    uint32_t ctrl_ext;
+
+    DEBUGFUNC("e1000_phy_hw_reset");
+
+    DEBUGOUT("Resetting Phy...\n");
+
+    if(hw->mac_type > e1000_82543) {
+        /* Read the device control register and assert the E1000_CTRL_PHY_RST
+         * bit. Then, take it out of reset.
+         */
+        ctrl = E1000_READ_REG(hw, CTRL);
+        E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(10);
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        E1000_WRITE_FLUSH(hw);
+    } else {
+        /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
+         * bit to put the PHY into reset. Then, take it out of reset.
+         */
+        ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+        ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
+        ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH(hw);
+        msec_delay(10);
+        ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
+        E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
+        E1000_WRITE_FLUSH(hw);
+    }
+    udelay(150);
+}
+
+/******************************************************************************
+* Resets the PHY
+*
+* hw - Struct containing variables accessed by shared code
+*
+* Sets bit 15 of the MII Control regiser
+******************************************************************************/
+int32_t
+e1000_phy_reset(struct e1000_hw *hw)
+{
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_phy_reset");
+
+    if(e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    phy_data |= MII_CR_RESET;
+    if(e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
+        DEBUGOUT("PHY Write Error\n");
+        return -E1000_ERR_PHY;
+    }
+    udelay(1);
+    return 0;
+}
+
+/******************************************************************************
+* Probes the expected PHY address for known PHY IDs
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+int32_t
+e1000_detect_gig_phy(struct e1000_hw *hw)
+{
+    uint16_t phy_id_high, phy_id_low;
+    boolean_t match = FALSE;
+
+    DEBUGFUNC("e1000_detect_gig_phy");
+
+    /* Read the PHY ID Registers to identify which PHY is onboard. */
+    if(e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    hw->phy_id = (uint32_t) (phy_id_high << 16);
+    udelay(2);
+    if(e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
+        DEBUGOUT("PHY Read Error\n");
+        return -E1000_ERR_PHY;
+    }
+    hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
+    hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
+
+    switch(hw->mac_type) {
+    case e1000_82543:
+        if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+        break;
+    case e1000_82544:
+        if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+        break;
+    case e1000_82540:
+    case e1000_82545:
+    case e1000_82546:
+        if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+        break;
+    default:
+        DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
+        return -E1000_ERR_CONFIG;
+    }
+    if(match) {
+        DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
+        return 0;
+    }
+    DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
+    return -E1000_ERR_PHY;
+}
+
+/******************************************************************************
+* Resets the PHY's DSP
+*
+* hw - Struct containing variables accessed by shared code
+******************************************************************************/
+static int32_t
+e1000_phy_reset_dsp(struct e1000_hw *hw)
+{
+    int32_t ret_val = -E1000_ERR_PHY;
+    DEBUGFUNC("e1000_phy_reset_dsp");
+    
+    do {
+        if(e1000_write_phy_reg(hw, 29, 0x001d) < 0) break;
+        if(e1000_write_phy_reg(hw, 30, 0x00c1) < 0) break;
+        if(e1000_write_phy_reg(hw, 30, 0x0000) < 0) break;
+        ret_val = 0;
+    } while(0);
+
+    if(ret_val < 0) DEBUGOUT("PHY Write Error\n");
+    return ret_val;
+}
+
+/******************************************************************************
+* Get PHY information from various PHY registers
+*
+* hw - Struct containing variables accessed by shared code
+* phy_info - PHY information structure
+******************************************************************************/
+int32_t
+e1000_phy_get_info(struct e1000_hw *hw,
+                   struct e1000_phy_info *phy_info)
+{
+    int32_t ret_val = -E1000_ERR_PHY;
+    uint16_t phy_data;
+
+    DEBUGFUNC("e1000_phy_get_info");
+
+    phy_info->cable_length = e1000_cable_length_undefined;
+    phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
+    phy_info->cable_polarity = e1000_rev_polarity_undefined;
+    phy_info->polarity_correction = e1000_polarity_reversal_undefined;
+    phy_info->mdix_mode = e1000_auto_x_mode_undefined;
+    phy_info->local_rx = e1000_1000t_rx_status_undefined;
+    phy_info->remote_rx = e1000_1000t_rx_status_undefined;
+
+    if(hw->media_type != e1000_media_type_copper) {
+        DEBUGOUT("PHY info is only valid for copper media\n");
+        return -E1000_ERR_CONFIG;
+    }
+
+    do {
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break;
+        if(e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) break;
+        if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+            DEBUGOUT("PHY info is only valid if link is up\n");
+            return -E1000_ERR_CONFIG;
+        }
+
+        if(e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0)
+            break;
+        phy_info->extended_10bt_distance =
+            (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+            M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
+        phy_info->polarity_correction =
+            (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+            M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
+
+        if(e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0)
+            break;
+        phy_info->cable_polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
+            M88E1000_PSSR_REV_POLARITY_SHIFT;
+        phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
+            M88E1000_PSSR_MDIX_SHIFT;
+        if(phy_data & M88E1000_PSSR_1000MBS) {
+            /* Cable Length Estimation and Local/Remote Receiver Informatoion
+             * are only valid at 1000 Mbps
+             */
+            phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+                                      M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+            if(e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data) < 0) 
+                break;
+            phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+                SR_1000T_LOCAL_RX_STATUS_SHIFT;
+            phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+                SR_1000T_REMOTE_RX_STATUS_SHIFT;
+        }
+        ret_val = 0;
+    } while(0);
+
+    if(ret_val < 0) DEBUGOUT("PHY Read Error\n");
+    return ret_val;
+}
+
+int32_t
+e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_validate_mdi_settings");
+
+    if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+        DEBUGOUT("Invalid MDI setting detected\n");
+        hw->mdix = 1;
+        return -E1000_ERR_CONFIG;
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Raises the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_raise_ee_clk(struct e1000_hw *hw,
+                   uint32_t *eecd)
+{
+    /* Raise the clock input to the EEPROM (by setting the SK bit), and then
+     * wait <delay> microseconds.
+     */
+    *eecd = *eecd | E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, *eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+}
+
+/******************************************************************************
+ * Lowers the EEPROM's clock input.
+ *
+ * hw - Struct containing variables accessed by shared code 
+ * eecd - EECD's current value
+ *****************************************************************************/
+static void
+e1000_lower_ee_clk(struct e1000_hw *hw,
+                   uint32_t *eecd)
+{
+    /* Lower the clock input to the EEPROM (by clearing the SK bit), and then 
+     * wait 50 microseconds. 
+     */
+    *eecd = *eecd & ~E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, *eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+}
+
+/******************************************************************************
+ * Shift data bits out to the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * data - data to send to the EEPROM
+ * count - number of bits to shift out
+ *****************************************************************************/
+static void
+e1000_shift_out_ee_bits(struct e1000_hw *hw,
+                        uint16_t data,
+                        uint16_t count)
+{
+    uint32_t eecd;
+    uint32_t mask;
+
+    /* We need to shift "count" bits out to the EEPROM. So, value in the
+     * "data" parameter will be shifted out to the EEPROM one bit at a time.
+     * In order to do this, "data" must be broken down into bits. 
+     */
+    mask = 0x01 << (count - 1);
+    eecd = E1000_READ_REG(hw, EECD);
+    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+    do {
+        /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
+         * and then raising and then lowering the clock (the SK bit controls
+         * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
+         * by setting "DI" to "0" and then raising and then lowering the clock.
+         */
+        eecd &= ~E1000_EECD_DI;
+
+        if(data & mask)
+            eecd |= E1000_EECD_DI;
+
+        E1000_WRITE_REG(hw, EECD, eecd);
+        E1000_WRITE_FLUSH(hw);
+
+        udelay(50);
+
+        e1000_raise_ee_clk(hw, &eecd);
+        e1000_lower_ee_clk(hw, &eecd);
+
+        mask = mask >> 1;
+
+    } while(mask);
+
+    /* We leave the "DI" bit set to "0" when we leave this routine. */
+    eecd &= ~E1000_EECD_DI;
+    E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Shift data bits in from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static uint16_t
+e1000_shift_in_ee_bits(struct e1000_hw *hw)
+{
+    uint32_t eecd;
+    uint32_t i;
+    uint16_t data;
+
+    /* In order to read a register from the EEPROM, we need to shift 'count'
+     * bits in from the EEPROM. Bits are "shifted in" by raising the clock
+     * input to the EEPROM (setting the SK bit), and then reading the value of
+     * the "DO" bit.  During this "shifting in" process the "DI" bit should
+     * always be clear.
+     */
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+    data = 0;
+
+    for(i = 0; i < 16; i++) {
+        data = data << 1;
+        e1000_raise_ee_clk(hw, &eecd);
+
+        eecd = E1000_READ_REG(hw, EECD);
+
+        eecd &= ~(E1000_EECD_DI);
+        if(eecd & E1000_EECD_DO)
+            data |= 1;
+
+        e1000_lower_ee_clk(hw, &eecd);
+    }
+
+    return data;
+}
+
+/******************************************************************************
+ * Prepares EEPROM for access
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This 
+ * function should be called before issuing a command to the EEPROM.
+ *****************************************************************************/
+static void
+e1000_setup_eeprom(struct e1000_hw *hw)
+{
+    uint32_t eecd;
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    /* Clear SK and DI */
+    eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
+    E1000_WRITE_REG(hw, EECD, eecd);
+
+    /* Set CS */
+    eecd |= E1000_EECD_CS;
+    E1000_WRITE_REG(hw, EECD, eecd);
+}
+
+/******************************************************************************
+ * Returns EEPROM to a "standby" state
+ * 
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_standby_eeprom(struct e1000_hw *hw)
+{
+    uint32_t eecd;
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    /* Deselct EEPROM */
+    eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+    E1000_WRITE_REG(hw, EECD, eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+
+    /* Clock high */
+    eecd |= E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+
+    /* Select EEPROM */
+    eecd |= E1000_EECD_CS;
+    E1000_WRITE_REG(hw, EECD, eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+
+    /* Clock low */
+    eecd &= ~E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+}
+
+/******************************************************************************
+ * Raises then lowers the EEPROM's clock pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_clock_eeprom(struct e1000_hw *hw)
+{
+    uint32_t eecd;
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    /* Rising edge of clock */
+    eecd |= E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+
+    /* Falling edge of clock */
+    eecd &= ~E1000_EECD_SK;
+    E1000_WRITE_REG(hw, EECD, eecd);
+    E1000_WRITE_FLUSH(hw);
+    udelay(50);
+}
+
+/******************************************************************************
+ * Terminates a command by lowering the EEPROM's chip select pin
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+static void
+e1000_cleanup_eeprom(struct e1000_hw *hw)
+{
+    uint32_t eecd;
+
+    eecd = E1000_READ_REG(hw, EECD);
+
+    eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+
+    E1000_WRITE_REG(hw, EECD, eecd);
+
+    e1000_clock_eeprom(hw);
+}
+
+/******************************************************************************
+ * Reads a 16 bit word from the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset of  word in the EEPROM to read
+ * data - word read from the EEPROM 
+ *****************************************************************************/
+int32_t
+e1000_read_eeprom(struct e1000_hw *hw,
+                  uint16_t offset,
+                  uint16_t *data)
+{
+    uint32_t eecd;
+    uint32_t i = 0;
+    boolean_t large_eeprom = FALSE;
+
+    DEBUGFUNC("e1000_read_eeprom");
+
+    /* Request EEPROM Access */
+    if(hw->mac_type > e1000_82544) {
+        eecd = E1000_READ_REG(hw, EECD);
+        if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE;
+        eecd |= E1000_EECD_REQ;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        eecd = E1000_READ_REG(hw, EECD);
+        while((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+            i++;
+            udelay(5);
+            eecd = E1000_READ_REG(hw, EECD);
+        }
+        if(!(eecd & E1000_EECD_GNT)) {
+            eecd &= ~E1000_EECD_REQ;
+            E1000_WRITE_REG(hw, EECD, eecd);
+            DEBUGOUT("Could not acquire EEPROM grant\n");
+            return -E1000_ERR_EEPROM;
+        }
+    }
+
+    /*  Prepare the EEPROM for reading  */
+    e1000_setup_eeprom(hw);
+
+    /*  Send the READ command (opcode + addr)  */
+    e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
+    if(large_eeprom) {
+        /* If we have a 256 word EEPROM, there are 8 address bits */
+        e1000_shift_out_ee_bits(hw, offset, 8);
+    } else {
+        /* If we have a 64 word EEPROM, there are 6 address bits */
+        e1000_shift_out_ee_bits(hw, offset, 6);
+    }
+
+    /* Read the data */
+    *data = e1000_shift_in_ee_bits(hw);
+
+    /* End this read operation */
+    e1000_standby_eeprom(hw);
+
+    /* Stop requesting EEPROM access */
+    if(hw->mac_type > e1000_82544) {
+        eecd = E1000_READ_REG(hw, EECD);
+        eecd &= ~E1000_EECD_REQ;
+        E1000_WRITE_REG(hw, EECD, eecd);
+    }
+
+    return 0;
+}
+
+/******************************************************************************
+ * Verifies that the EEPROM has a valid checksum
+ * 
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Reads the first 64 16 bit words of the EEPROM and sums the values read.
+ * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
+ * valid.
+ *****************************************************************************/
+int32_t
+e1000_validate_eeprom_checksum(struct e1000_hw *hw)
+{
+    uint16_t checksum = 0;
+    uint16_t i, eeprom_data;
+
+    DEBUGFUNC("e1000_validate_eeprom_checksum");
+
+    for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
+        if(e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        checksum += eeprom_data;
+    }
+
+    if(checksum == (uint16_t) EEPROM_SUM) {
+        return 0;
+    } else {
+        DEBUGOUT("EEPROM Checksum Invalid\n");    
+        return -E1000_ERR_EEPROM;
+    }
+}
+
+/******************************************************************************
+ * Calculates the EEPROM checksum and writes it to the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
+ * Writes the difference to word offset 63 of the EEPROM.
+ *****************************************************************************/
+int32_t
+e1000_update_eeprom_checksum(struct e1000_hw *hw)
+{
+    uint16_t checksum = 0;
+    uint16_t i, eeprom_data;
+
+    DEBUGFUNC("e1000_update_eeprom_checksum");
+
+    for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+        if(e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        checksum += eeprom_data;
+    }
+    checksum = (uint16_t) EEPROM_SUM - checksum;
+    if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, checksum) < 0) {
+        DEBUGOUT("EEPROM Write Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Writes a 16 bit word to a given offset in the EEPROM.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset within the EEPROM to be written to
+ * data - 16 bit word to be writen to the EEPROM
+ *
+ * If e1000_update_eeprom_checksum is not called after this function, the 
+ * EEPROM will most likely contain an invalid checksum.
+ *****************************************************************************/
+int32_t
+e1000_write_eeprom(struct e1000_hw *hw,
+                   uint16_t offset,
+                   uint16_t data)
+{
+    uint32_t eecd;
+    uint32_t i = 0;
+    int32_t status = 0;
+    boolean_t large_eeprom = FALSE;
+
+    DEBUGFUNC("e1000_write_eeprom");
+
+    /* Request EEPROM Access */
+    if(hw->mac_type > e1000_82544) {
+        eecd = E1000_READ_REG(hw, EECD);
+        if(eecd & E1000_EECD_SIZE) large_eeprom = TRUE;
+        eecd |= E1000_EECD_REQ;
+        E1000_WRITE_REG(hw, EECD, eecd);
+        eecd = E1000_READ_REG(hw, EECD);
+        while((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
+            i++;
+            udelay(5);
+            eecd = E1000_READ_REG(hw, EECD);
+        }
+        if(!(eecd & E1000_EECD_GNT)) {
+            eecd &= ~E1000_EECD_REQ;
+            E1000_WRITE_REG(hw, EECD, eecd);
+            DEBUGOUT("Could not acquire EEPROM grant\n");
+            return -E1000_ERR_EEPROM;
+        }
+    }
+
+    /* Prepare the EEPROM for writing  */
+    e1000_setup_eeprom(hw);
+
+    /* Send the 9-bit (or 11-bit on large EEPROM) EWEN (write enable) command
+     * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This puts the EEPROM
+     * into write/erase mode. 
+     */
+    e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
+    if(large_eeprom) 
+        e1000_shift_out_ee_bits(hw, 0, 6);
+    else
+        e1000_shift_out_ee_bits(hw, 0, 4);
+
+    /* Prepare the EEPROM */
+    e1000_standby_eeprom(hw);
+
+    /* Send the Write command (3-bit opcode + addr) */
+    e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
+    if(large_eeprom) 
+        /* If we have a 256 word EEPROM, there are 8 address bits */
+        e1000_shift_out_ee_bits(hw, offset, 8);
+    else
+        /* If we have a 64 word EEPROM, there are 6 address bits */
+        e1000_shift_out_ee_bits(hw, offset, 6);
+
+    /* Send the data */
+    e1000_shift_out_ee_bits(hw, data, 16);
+
+    /* Toggle the CS line.  This in effect tells to EEPROM to actually execute 
+     * the command in question.
+     */
+    e1000_standby_eeprom(hw);
+
+    /* Now read DO repeatedly until is high (equal to '1').  The EEEPROM will
+     * signal that the command has been completed by raising the DO signal.
+     * If DO does not go high in 10 milliseconds, then error out.
+     */
+    for(i = 0; i < 200; i++) {
+        eecd = E1000_READ_REG(hw, EECD);
+        if(eecd & E1000_EECD_DO) break;
+        udelay(50);
+    }
+    if(i == 200) {
+        DEBUGOUT("EEPROM Write did not complete\n");
+        status = -E1000_ERR_EEPROM;
+    }
+
+    /* Recover from write */
+    e1000_standby_eeprom(hw);
+
+    /* Send the 9-bit (or 11-bit on large EEPROM) EWDS (write disable) command
+     * to the EEPROM (5-bit opcode plus 4/6-bit dummy). This takes the EEPROM
+     * out of write/erase mode.
+     */
+    e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
+    if(large_eeprom) 
+        e1000_shift_out_ee_bits(hw, 0, 6);
+    else
+        e1000_shift_out_ee_bits(hw, 0, 4);
+
+    /* Done with writing */
+    e1000_cleanup_eeprom(hw);
+
+    /* Stop requesting EEPROM access */
+    if(hw->mac_type > e1000_82544) {
+        eecd = E1000_READ_REG(hw, EECD);
+        eecd &= ~E1000_EECD_REQ;
+        E1000_WRITE_REG(hw, EECD, eecd);
+    }
+
+    return status;
+}
+
+/******************************************************************************
+ * Reads the adapter's part number from the EEPROM
+ *
+ * hw - Struct containing variables accessed by shared code
+ * part_num - Adapter's part number
+ *****************************************************************************/
+int32_t
+e1000_read_part_num(struct e1000_hw *hw,
+                    uint32_t *part_num)
+{
+    uint16_t offset = EEPROM_PBA_BYTE_1;
+    uint16_t eeprom_data;
+
+    DEBUGFUNC("e1000_read_part_num");
+
+    /* Get word 0 from EEPROM */
+    if(e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+    /* Save word 0 in upper half of part_num */
+    *part_num = (uint32_t) (eeprom_data << 16);
+
+    /* Get word 1 from EEPROM */
+    if(e1000_read_eeprom(hw, ++offset, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+    /* Save word 1 in lower half of part_num */
+    *part_num |= eeprom_data;
+
+    return 0;
+}
+
+/******************************************************************************
+ * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
+ * second function of dual function devices
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_read_mac_addr(struct e1000_hw * hw)
+{
+    uint16_t offset;
+    uint16_t eeprom_data, i;
+
+    DEBUGFUNC("e1000_read_mac_addr");
+
+    for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+        offset = i >> 1;
+        if(e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
+            DEBUGOUT("EEPROM Read Error\n");
+            return -E1000_ERR_EEPROM;
+        }
+        hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
+        hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
+    }
+    if((hw->mac_type == e1000_82546) &&
+       (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
+        if(hw->perm_mac_addr[5] & 0x01)
+            hw->perm_mac_addr[5] &= ~(0x01);
+        else
+            hw->perm_mac_addr[5] |= 0x01;
+    }
+    for(i = 0; i < NODE_ADDRESS_SIZE; i++)
+        hw->mac_addr[i] = hw->perm_mac_addr[i];
+    return 0;
+}
+
+/******************************************************************************
+ * Initializes receive address filters.
+ *
+ * hw - Struct containing variables accessed by shared code 
+ *
+ * Places the MAC address in receive address register 0 and clears the rest
+ * of the receive addresss registers. Clears the multicast table. Assumes
+ * the receiver is in reset when the routine is called.
+ *****************************************************************************/
+void
+e1000_init_rx_addrs(struct e1000_hw *hw)
+{
+    uint32_t i;
+    uint32_t addr_low;
+    uint32_t addr_high;
+
+    DEBUGFUNC("e1000_init_rx_addrs");
+
+    /* Setup the receive address. */
+    DEBUGOUT("Programming MAC Address into RAR[0]\n");
+    addr_low = (hw->mac_addr[0] |
+                (hw->mac_addr[1] << 8) |
+                (hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
+
+    addr_high = (hw->mac_addr[4] |
+                 (hw->mac_addr[5] << 8) | E1000_RAH_AV);
+
+    E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
+    E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
+
+    /* Zero out the other 15 receive addresses. */
+    DEBUGOUT("Clearing RAR[1-15]\n");
+    for(i = 1; i < E1000_RAR_ENTRIES; i++) {
+        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+    }
+}
+
+/******************************************************************************
+ * Updates the MAC's list of multicast addresses.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr_list - the list of new multicast addresses
+ * mc_addr_count - number of addresses
+ * pad - number of bytes between addresses in the list
+ *
+ * The given list replaces any existing list. Clears the last 15 receive
+ * address registers and the multicast table. Uses receive address registers
+ * for the first 15 multicast addresses, and hashes the rest into the 
+ * multicast table.
+ *****************************************************************************/
+void
+e1000_mc_addr_list_update(struct e1000_hw *hw,
+                          uint8_t *mc_addr_list,
+                          uint32_t mc_addr_count,
+                          uint32_t pad)
+{
+    uint32_t hash_value;
+    uint32_t i;
+    uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */
+
+    DEBUGFUNC("e1000_mc_addr_list_update");
+
+    /* Set the new number of MC addresses that we are being requested to use. */
+    hw->num_mc_addrs = mc_addr_count;
+
+    /* Clear RAR[1-15] */
+    DEBUGOUT(" Clearing RAR[1-15]\n");
+    for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) {
+        E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
+        E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
+    }
+
+    /* Clear the MTA */
+    DEBUGOUT(" Clearing MTA\n");
+    for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) {
+        E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
+    }
+
+    /* Add the new addresses */
+    for(i = 0; i < mc_addr_count; i++) {
+        DEBUGOUT(" Adding the multicast addresses:\n");
+        DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
+                  mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
+
+        hash_value = e1000_hash_mc_addr(hw,
+                                        mc_addr_list +
+                                        (i * (ETH_LENGTH_OF_ADDRESS + pad)));
+
+        DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
+
+        /* Place this multicast address in the RAR if there is room, *
+         * else put it in the MTA            
+         */
+        if(rar_used_count < E1000_RAR_ENTRIES) {
+            e1000_rar_set(hw,
+                          mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
+                          rar_used_count);
+            rar_used_count++;
+        } else {
+            e1000_mta_set(hw, hash_value);
+        }
+    }
+    DEBUGOUT("MC Update Complete\n");
+}
+
+/******************************************************************************
+ * Hashes an address to determine its location in the multicast table
+ *
+ * hw - Struct containing variables accessed by shared code
+ * mc_addr - the multicast address to hash 
+ *****************************************************************************/
+uint32_t
+e1000_hash_mc_addr(struct e1000_hw *hw,
+                   uint8_t *mc_addr)
+{
+    uint32_t hash_value = 0;
+
+    /* The portion of the address that is used for the hash table is
+     * determined by the mc_filter_type setting.  
+     */
+    switch (hw->mc_filter_type) {
+    /* [0] [1] [2] [3] [4] [5]
+     * 01  AA  00  12  34  56
+     * LSB                 MSB
+     */
+    case 0:
+        /* [47:36] i.e. 0x563 for above example address */
+        hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
+        break;
+    case 1:
+        /* [46:35] i.e. 0xAC6 for above example address */
+        hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
+        break;
+    case 2:
+        /* [45:34] i.e. 0x5D8 for above example address */
+        hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
+        break;
+    case 3:
+        /* [43:32] i.e. 0x634 for above example address */
+        hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
+        break;
+    }
+
+    hash_value &= 0xFFF;
+    return hash_value;
+}
+
+/******************************************************************************
+ * Sets the bit in the multicast table corresponding to the hash value.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * hash_value - Multicast address hash value
+ *****************************************************************************/
+void
+e1000_mta_set(struct e1000_hw *hw,
+              uint32_t hash_value)
+{
+    uint32_t hash_bit, hash_reg;
+    uint32_t mta;
+    uint32_t temp;
+
+    /* The MTA is a register array of 128 32-bit registers.  
+     * It is treated like an array of 4096 bits.  We want to set 
+     * bit BitArray[hash_value]. So we figure out what register
+     * the bit is in, read it, OR in the new bit, then write
+     * back the new value.  The register is determined by the 
+     * upper 7 bits of the hash value and the bit within that 
+     * register are determined by the lower 5 bits of the value.
+     */
+    hash_reg = (hash_value >> 5) & 0x7F;
+    hash_bit = hash_value & 0x1F;
+
+    mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
+
+    mta |= (1 << hash_bit);
+
+    /* If we are on an 82544 and we are trying to write an odd offset
+     * in the MTA, save off the previous entry before writing and
+     * restore the old value after writing.
+     */
+    if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
+        temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
+        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+        E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
+    } else {
+        E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
+    }
+}
+
+/******************************************************************************
+ * Puts an ethernet address into a receive address register.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * addr - Address to put into receive address register
+ * index - Receive address register to write
+ *****************************************************************************/
+void
+e1000_rar_set(struct e1000_hw *hw,
+              uint8_t *addr,
+              uint32_t index)
+{
+    uint32_t rar_low, rar_high;
+
+    /* HW expects these in little endian so we reverse the byte order
+     * from network order (big endian) to little endian              
+     */
+    rar_low = ((uint32_t) addr[0] |
+               ((uint32_t) addr[1] << 8) |
+               ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
+
+    rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
+
+    E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
+    E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
+}
+
+/******************************************************************************
+ * Writes a value to the specified offset in the VLAN filter table.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - Offset in VLAN filer table to write
+ * value - Value to write into VLAN filter table
+ *****************************************************************************/
+void
+e1000_write_vfta(struct e1000_hw *hw,
+                 uint32_t offset,
+                 uint32_t value)
+{
+    uint32_t temp;
+
+    if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
+        temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
+        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+        E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
+    } else {
+        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
+    }
+}
+
+/******************************************************************************
+ * Clears the VLAN filer table
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+    uint32_t offset;
+
+    for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
+        E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
+}
+
+static int32_t
+e1000_id_led_init(struct e1000_hw * hw)
+{
+    uint32_t ledctl;
+    const uint32_t ledctl_mask = 0x000000FF;
+    const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+    const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+    uint16_t eeprom_data, i, temp;
+    const uint16_t led_mask = 0x0F;
+        
+    DEBUGFUNC("e1000_id_led_init");
+    
+    if(hw->mac_type < e1000_82540) {
+        /* Nothing to do */
+        return 0;
+    }
+    
+    ledctl = E1000_READ_REG(hw, LEDCTL);
+    hw->ledctl_default = ledctl;
+    hw->ledctl_mode1 = hw->ledctl_default;
+    hw->ledctl_mode2 = hw->ledctl_default;
+        
+    if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, &eeprom_data) < 0) {
+        DEBUGOUT("EEPROM Read Error\n");
+        return -E1000_ERR_EEPROM;
+    }
+    if((eeprom_data== ID_LED_RESERVED_0000) || 
+       (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
+    for(i = 0; i < 4; i++) {
+        temp = (eeprom_data >> (i << 2)) & led_mask;
+        switch(temp) {
+        case ID_LED_ON1_DEF2:
+        case ID_LED_ON1_ON2:
+        case ID_LED_ON1_OFF2:
+            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode1 |= ledctl_on << (i << 3);
+            break;
+        case ID_LED_OFF1_DEF2:
+        case ID_LED_OFF1_ON2:
+        case ID_LED_OFF1_OFF2:
+            hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode1 |= ledctl_off << (i << 3);
+            break;
+        default:
+            /* Do nothing */
+            break;
+        }
+        switch(temp) {
+        case ID_LED_DEF1_ON2:
+        case ID_LED_ON1_ON2:
+        case ID_LED_OFF1_ON2:
+            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode2 |= ledctl_on << (i << 3);
+            break;
+        case ID_LED_DEF1_OFF2:
+        case ID_LED_ON1_OFF2:
+        case ID_LED_OFF1_OFF2:
+            hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+            hw->ledctl_mode2 |= ledctl_off << (i << 3);
+            break;
+        default:
+            /* Do nothing */
+            break;
+        }
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Prepares SW controlable LED for use and saves the current state of the LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_setup_led(struct e1000_hw *hw)
+{
+    uint32_t ledctl;
+ 
+    DEBUGFUNC("e1000_setup_led");
+   
+    switch(hw->device_id) {
+    case E1000_DEV_ID_82542:
+    case E1000_DEV_ID_82543GC_FIBER:
+    case E1000_DEV_ID_82543GC_COPPER:
+    case E1000_DEV_ID_82544EI_COPPER:
+    case E1000_DEV_ID_82544EI_FIBER:
+    case E1000_DEV_ID_82544GC_COPPER:
+    case E1000_DEV_ID_82544GC_LOM:
+        /* No setup necessary */
+        break;
+    case E1000_DEV_ID_82545EM_FIBER:
+    case E1000_DEV_ID_82546EB_FIBER:
+        ledctl = E1000_READ_REG(hw, LEDCTL);
+        /* Save current LEDCTL settings */
+        hw->ledctl_default = ledctl;
+        /* Turn off LED0 */
+        ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+                    E1000_LEDCTL_LED0_BLINK | 
+                    E1000_LEDCTL_LED0_MODE_MASK);
+        ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT);
+        E1000_WRITE_REG(hw, LEDCTL, ledctl);
+        break;
+    case E1000_DEV_ID_82540EP:
+    case E1000_DEV_ID_82540EP_LOM:
+    case E1000_DEV_ID_82540EP_LP:
+    case E1000_DEV_ID_82540EM:
+    case E1000_DEV_ID_82540EM_LOM:
+    case E1000_DEV_ID_82545EM_COPPER:
+    case E1000_DEV_ID_82546EB_COPPER:
+        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+        break;
+    default:
+        DEBUGOUT("Invalid device ID\n");
+        return -E1000_ERR_CONFIG;
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Restores the saved state of the SW controlable LED.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_cleanup_led(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_cleanup_led");
+
+    switch(hw->device_id) {
+    case E1000_DEV_ID_82542:
+    case E1000_DEV_ID_82543GC_FIBER:
+    case E1000_DEV_ID_82543GC_COPPER:
+    case E1000_DEV_ID_82544EI_COPPER:
+    case E1000_DEV_ID_82544EI_FIBER:
+    case E1000_DEV_ID_82544GC_COPPER:
+    case E1000_DEV_ID_82544GC_LOM:
+        /* No cleanup necessary */
+        break;
+    case E1000_DEV_ID_82540EP:
+    case E1000_DEV_ID_82540EP_LOM:
+    case E1000_DEV_ID_82540EP_LP:
+    case E1000_DEV_ID_82540EM:
+    case E1000_DEV_ID_82540EM_LOM:
+    case E1000_DEV_ID_82545EM_COPPER:
+    case E1000_DEV_ID_82545EM_FIBER:
+    case E1000_DEV_ID_82546EB_COPPER:
+    case E1000_DEV_ID_82546EB_FIBER:
+        /* Restore LEDCTL settings */
+        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
+        break;
+    default:
+        DEBUGOUT("Invalid device ID\n");
+        return -E1000_ERR_CONFIG;
+    }
+    return 0;
+}
+    
+/******************************************************************************
+ * Turns on the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_led_on(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+
+    DEBUGFUNC("e1000_led_on");
+
+    switch(hw->device_id) {
+    case E1000_DEV_ID_82542:
+    case E1000_DEV_ID_82543GC_FIBER:
+    case E1000_DEV_ID_82543GC_COPPER:
+    case E1000_DEV_ID_82544EI_FIBER:
+        ctrl = E1000_READ_REG(hw, CTRL);
+        /* Set SW Defineable Pin 0 to turn on the LED */
+        ctrl |= E1000_CTRL_SWDPIN0;
+        ctrl |= E1000_CTRL_SWDPIO0;
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        break;
+    case E1000_DEV_ID_82544EI_COPPER:
+    case E1000_DEV_ID_82544GC_COPPER:
+    case E1000_DEV_ID_82544GC_LOM:
+    case E1000_DEV_ID_82545EM_FIBER:
+    case E1000_DEV_ID_82546EB_FIBER:
+        ctrl = E1000_READ_REG(hw, CTRL);
+        /* Clear SW Defineable Pin 0 to turn on the LED */
+        ctrl &= ~E1000_CTRL_SWDPIN0;
+        ctrl |= E1000_CTRL_SWDPIO0;
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        break;
+    case E1000_DEV_ID_82540EP:
+    case E1000_DEV_ID_82540EP_LOM:
+    case E1000_DEV_ID_82540EP_LP:
+    case E1000_DEV_ID_82540EM:
+    case E1000_DEV_ID_82540EM_LOM:
+    case E1000_DEV_ID_82545EM_COPPER:
+    case E1000_DEV_ID_82546EB_COPPER:
+        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
+        break;
+    default:
+        DEBUGOUT("Invalid device ID\n");
+        return -E1000_ERR_CONFIG;
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Turns off the software controllable LED
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+int32_t
+e1000_led_off(struct e1000_hw *hw)
+{
+    uint32_t ctrl;
+
+    DEBUGFUNC("e1000_led_off");
+
+    switch(hw->device_id) {
+    case E1000_DEV_ID_82542:
+    case E1000_DEV_ID_82543GC_FIBER:
+    case E1000_DEV_ID_82543GC_COPPER:
+    case E1000_DEV_ID_82544EI_FIBER:
+        ctrl = E1000_READ_REG(hw, CTRL);
+        /* Clear SW Defineable Pin 0 to turn off the LED */
+        ctrl &= ~E1000_CTRL_SWDPIN0;
+        ctrl |= E1000_CTRL_SWDPIO0;
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        break;
+    case E1000_DEV_ID_82544EI_COPPER:
+    case E1000_DEV_ID_82544GC_COPPER:
+    case E1000_DEV_ID_82544GC_LOM:
+    case E1000_DEV_ID_82545EM_FIBER:
+    case E1000_DEV_ID_82546EB_FIBER:
+        ctrl = E1000_READ_REG(hw, CTRL);
+        /* Set SW Defineable Pin 0 to turn off the LED */
+        ctrl |= E1000_CTRL_SWDPIN0;
+        ctrl |= E1000_CTRL_SWDPIO0;
+        E1000_WRITE_REG(hw, CTRL, ctrl);
+        break;
+    case E1000_DEV_ID_82540EP:
+    case E1000_DEV_ID_82540EP_LOM:
+    case E1000_DEV_ID_82540EP_LP:
+    case E1000_DEV_ID_82540EM:
+    case E1000_DEV_ID_82540EM_LOM:
+    case E1000_DEV_ID_82545EM_COPPER:
+    case E1000_DEV_ID_82546EB_COPPER:
+        E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
+        break;
+    default:
+        DEBUGOUT("Invalid device ID\n");
+        return -E1000_ERR_CONFIG;
+    }
+    return 0;
+}
+
+/******************************************************************************
+ * Clears all hardware statistics counters. 
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_clear_hw_cntrs(struct e1000_hw *hw)
+{
+    volatile uint32_t temp;
+
+    temp = E1000_READ_REG(hw, CRCERRS);
+    temp = E1000_READ_REG(hw, SYMERRS);
+    temp = E1000_READ_REG(hw, MPC);
+    temp = E1000_READ_REG(hw, SCC);
+    temp = E1000_READ_REG(hw, ECOL);
+    temp = E1000_READ_REG(hw, MCC);
+    temp = E1000_READ_REG(hw, LATECOL);
+    temp = E1000_READ_REG(hw, COLC);
+    temp = E1000_READ_REG(hw, DC);
+    temp = E1000_READ_REG(hw, SEC);
+    temp = E1000_READ_REG(hw, RLEC);
+    temp = E1000_READ_REG(hw, XONRXC);
+    temp = E1000_READ_REG(hw, XONTXC);
+    temp = E1000_READ_REG(hw, XOFFRXC);
+    temp = E1000_READ_REG(hw, XOFFTXC);
+    temp = E1000_READ_REG(hw, FCRUC);
+    temp = E1000_READ_REG(hw, PRC64);
+    temp = E1000_READ_REG(hw, PRC127);
+    temp = E1000_READ_REG(hw, PRC255);
+    temp = E1000_READ_REG(hw, PRC511);
+    temp = E1000_READ_REG(hw, PRC1023);
+    temp = E1000_READ_REG(hw, PRC1522);
+    temp = E1000_READ_REG(hw, GPRC);
+    temp = E1000_READ_REG(hw, BPRC);
+    temp = E1000_READ_REG(hw, MPRC);
+    temp = E1000_READ_REG(hw, GPTC);
+    temp = E1000_READ_REG(hw, GORCL);
+    temp = E1000_READ_REG(hw, GORCH);
+    temp = E1000_READ_REG(hw, GOTCL);
+    temp = E1000_READ_REG(hw, GOTCH);
+    temp = E1000_READ_REG(hw, RNBC);
+    temp = E1000_READ_REG(hw, RUC);
+    temp = E1000_READ_REG(hw, RFC);
+    temp = E1000_READ_REG(hw, ROC);
+    temp = E1000_READ_REG(hw, RJC);
+    temp = E1000_READ_REG(hw, TORL);
+    temp = E1000_READ_REG(hw, TORH);
+    temp = E1000_READ_REG(hw, TOTL);
+    temp = E1000_READ_REG(hw, TOTH);
+    temp = E1000_READ_REG(hw, TPR);
+    temp = E1000_READ_REG(hw, TPT);
+    temp = E1000_READ_REG(hw, PTC64);
+    temp = E1000_READ_REG(hw, PTC127);
+    temp = E1000_READ_REG(hw, PTC255);
+    temp = E1000_READ_REG(hw, PTC511);
+    temp = E1000_READ_REG(hw, PTC1023);
+    temp = E1000_READ_REG(hw, PTC1522);
+    temp = E1000_READ_REG(hw, MPTC);
+    temp = E1000_READ_REG(hw, BPTC);
+
+    if(hw->mac_type < e1000_82543) return;
+
+    temp = E1000_READ_REG(hw, ALGNERRC);
+    temp = E1000_READ_REG(hw, RXERRC);
+    temp = E1000_READ_REG(hw, TNCRS);
+    temp = E1000_READ_REG(hw, CEXTERR);
+    temp = E1000_READ_REG(hw, TSCTC);
+    temp = E1000_READ_REG(hw, TSCTFC);
+
+    if(hw->mac_type <= e1000_82544) return;
+
+    temp = E1000_READ_REG(hw, MGTPRC);
+    temp = E1000_READ_REG(hw, MGTPDC);
+    temp = E1000_READ_REG(hw, MGTPTC);
+}
+
+/******************************************************************************
+ * Resets Adaptive IFS to its default state.
+ *
+ * hw - Struct containing variables accessed by shared code
+ *
+ * Call this after e1000_init_hw. You may override the IFS defaults by setting
+ * hw->ifs_params_forced to TRUE. However, you must initialize hw->
+ * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
+ * before calling this function.
+ *****************************************************************************/
+void
+e1000_reset_adaptive(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_reset_adaptive");
+
+    if(hw->adaptive_ifs) {
+        if(!hw->ifs_params_forced) {
+            hw->current_ifs_val = 0;
+            hw->ifs_min_val = IFS_MIN;
+            hw->ifs_max_val = IFS_MAX;
+            hw->ifs_step_size = IFS_STEP;
+            hw->ifs_ratio = IFS_RATIO;
+        }
+        hw->in_ifs_mode = FALSE;
+        E1000_WRITE_REG(hw, AIT, 0);
+    } else {
+        DEBUGOUT("Not in Adaptive IFS mode!\n");
+    }
+}
+
+/******************************************************************************
+ * Called during the callback/watchdog routine to update IFS value based on
+ * the ratio of transmits to collisions.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * tx_packets - Number of transmits since last callback
+ * total_collisions - Number of collisions since last callback
+ *****************************************************************************/
+void
+e1000_update_adaptive(struct e1000_hw *hw)
+{
+    DEBUGFUNC("e1000_update_adaptive");
+
+    if(hw->adaptive_ifs) {
+        if((hw->collision_delta * hw->ifs_ratio) > 
+           hw->tx_packet_delta) {
+            if(hw->tx_packet_delta > MIN_NUM_XMITS) {
+                hw->in_ifs_mode = TRUE;
+                if(hw->current_ifs_val < hw->ifs_max_val) {
+                    if(hw->current_ifs_val == 0)
+                        hw->current_ifs_val = hw->ifs_min_val;
+                    else
+                        hw->current_ifs_val += hw->ifs_step_size;
+                    E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
+                }
+            }
+        } else {
+            if((hw->in_ifs_mode == TRUE) && 
+               (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+                hw->current_ifs_val = 0;
+                hw->in_ifs_mode = FALSE;
+                E1000_WRITE_REG(hw, AIT, 0);
+            }
+        }
+    } else {
+        DEBUGOUT("Not in Adaptive IFS mode!\n");
+    }
+}
+
+/******************************************************************************
+ * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
+ * 
+ * hw - Struct containing variables accessed by shared code
+ * frame_len - The length of the frame in question
+ * mac_addr - The Ethernet destination address of the frame in question
+ *****************************************************************************/
+void
+e1000_tbi_adjust_stats(struct e1000_hw *hw,
+                       struct e1000_hw_stats *stats,
+                       uint32_t frame_len,
+                       uint8_t *mac_addr)
+{
+    uint64_t carry_bit;
+
+    /* First adjust the frame length. */
+    frame_len--;
+    /* We need to adjust the statistics counters, since the hardware
+     * counters overcount this packet as a CRC error and undercount
+     * the packet as a good packet
+     */
+    /* This packet should not be counted as a CRC error.    */
+    stats->crcerrs--;
+    /* This packet does count as a Good Packet Received.    */
+    stats->gprc++;
+
+    /* Adjust the Good Octets received counters             */
+    carry_bit = 0x80000000 & stats->gorcl;
+    stats->gorcl += frame_len;
+    /* If the high bit of Gorcl (the low 32 bits of the Good Octets
+     * Received Count) was one before the addition, 
+     * AND it is zero after, then we lost the carry out, 
+     * need to add one to Gorch (Good Octets Received Count High).
+     * This could be simplified if all environments supported 
+     * 64-bit integers.
+     */
+    if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
+        stats->gorch++;
+    /* Is this a broadcast or multicast?  Check broadcast first,
+     * since the test for a multicast frame will test positive on 
+     * a broadcast frame.
+     */
+    if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+        /* Broadcast packet */
+        stats->bprc++;
+    else if(*mac_addr & 0x01)
+        /* Multicast packet */
+        stats->mprc++;
+
+    if(frame_len == hw->max_frame_size) {
+        /* In this case, the hardware has overcounted the number of
+         * oversize frames.
+         */
+        if(stats->roc > 0)
+            stats->roc--;
+    }
+
+    /* Adjust the bin counters when the extra byte put the frame in the
+     * wrong bin. Remember that the frame_len was adjusted above.
+     */
+    if(frame_len == 64) {
+        stats->prc64++;
+        stats->prc127--;
+    } else if(frame_len == 127) {
+        stats->prc127++;
+        stats->prc255--;
+    } else if(frame_len == 255) {
+        stats->prc255++;
+        stats->prc511--;
+    } else if(frame_len == 511) {
+        stats->prc511++;
+        stats->prc1023--;
+    } else if(frame_len == 1023) {
+        stats->prc1023++;
+        stats->prc1522--;
+    } else if(frame_len == 1522) {
+        stats->prc1522++;
+    }
+}
+
+/******************************************************************************
+ * Gets the current PCI bus type, speed, and width of the hardware
+ *
+ * hw - Struct containing variables accessed by shared code
+ *****************************************************************************/
+void
+e1000_get_bus_info(struct e1000_hw *hw)
+{
+    uint32_t status;
+
+    if(hw->mac_type < e1000_82543) {
+        hw->bus_type = e1000_bus_type_unknown;
+        hw->bus_speed = e1000_bus_speed_unknown;
+        hw->bus_width = e1000_bus_width_unknown;
+        return;
+    }
+
+    status = E1000_READ_REG(hw, STATUS);
+    hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
+                   e1000_bus_type_pcix : e1000_bus_type_pci;
+    if(hw->bus_type == e1000_bus_type_pci) {
+        hw->bus_speed = (status & E1000_STATUS_PCI66) ?
+                        e1000_bus_speed_66 : e1000_bus_speed_33;
+    } else {
+        switch (status & E1000_STATUS_PCIX_SPEED) {
+        case E1000_STATUS_PCIX_SPEED_66:
+            hw->bus_speed = e1000_bus_speed_66;
+            break;
+        case E1000_STATUS_PCIX_SPEED_100:
+            hw->bus_speed = e1000_bus_speed_100;
+            break;
+        case E1000_STATUS_PCIX_SPEED_133:
+            hw->bus_speed = e1000_bus_speed_133;
+            break;
+        default:
+            hw->bus_speed = e1000_bus_speed_reserved;
+            break;
+        }
+    }
+    hw->bus_width = (status & E1000_STATUS_BUS64) ?
+                    e1000_bus_width_64 : e1000_bus_width_32;
+}
+/******************************************************************************
+ * Reads a value from one of the devices registers using port I/O (as opposed
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to read from
+ *****************************************************************************/
+uint32_t
+e1000_read_reg_io(struct e1000_hw *hw,
+                  uint32_t offset)
+{
+    uint32_t io_addr = hw->io_base;
+    uint32_t io_data = hw->io_base + 4;
+
+    e1000_io_write(hw, io_addr, offset);
+    return e1000_io_read(hw, io_data);
+}
+
+/******************************************************************************
+ * Writes a value to one of the devices registers using port I/O (as opposed to
+ * memory mapped I/O). Only 82544 and newer devices support port I/O.
+ *
+ * hw - Struct containing variables accessed by shared code
+ * offset - offset to write to
+ * value - value to write
+ *****************************************************************************/
+void
+e1000_write_reg_io(struct e1000_hw *hw,
+                   uint32_t offset,
+                   uint32_t value)
+{
+    uint32_t io_addr = hw->io_base;
+    uint32_t io_data = hw->io_base + 4;
+
+    e1000_io_write(hw, io_addr, offset);
+    e1000_io_write(hw, io_data, value);
+}
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)